3.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點(diǎn)為A,拋物線C:y2=8ax的焦點(diǎn)為F,若在E的漸近線上存在點(diǎn)P使得PA⊥FP,則E的離心率的取值范圍是( 。
A.(1,2)B.(1,$\frac{3\sqrt{2}}{4}$]C.(2,+∞)D.[$\frac{3\sqrt{2}}{4}$,+∞)

分析 求出雙曲線的右頂點(diǎn)和漸近線方程,拋物線的焦點(diǎn)坐標(biāo),可設(shè)P(m,$\frac{a}$m),以及向量的垂直的條件:數(shù)量積為0,再由二次方程有實(shí)根的條件:判別式大于等于0,化簡(jiǎn)整理,結(jié)合離心率公式即可得到所求范圍.

解答 解:雙曲線$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右頂點(diǎn)為A(a,0),
拋物線C:y2=8ax的焦點(diǎn)為F(2a,0),
雙曲線的漸近線方程為y=±$\frac{a}$x,
可設(shè)P(m,$\frac{a}$m),
即有$\overrightarrow{AP}$=(m-a,$\frac{a}$m),$\overrightarrow{FP}$=(m-2a,$\frac{a}$m),
由PA⊥FP,即為$\overrightarrow{AP}⊥\overrightarrow{FP}$,可得$\overrightarrow{AP}$•$\overrightarrow{FP}$=0,
即為(m-a)(m-2a)+$\frac{^{2}}{{a}^{2}}$m2=0,
化為(1+$\frac{^{2}}{{a}^{2}}$)m2-3ma+2a2=0,
由題意可得△=9a2-4(1+$\frac{^{2}}{{a}^{2}}$)•2a2≥0,
即有a2≥8b2=8(c2-a2),
即8c2≤9a2,
則e=$\frac{c}{a}$≤$\frac{3\sqrt{2}}{4}$.
由e>1,可得1<e≤$\frac{3\sqrt{2}}{4}$.
故選:B.

點(diǎn)評(píng) 本題考查雙曲線的離心率的范圍,考查拋物線的焦點(diǎn)和向量的數(shù)量積的性質(zhì),注意運(yùn)用二次方程有實(shí)根的條件:判別式大于等于0,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合M={0,1,2},N={x|-1≤x≤1,x∈Z},則M∩N為(  )
A.(0,1)B.[0,1]C.{0,1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)={log_9}({9^x}+1)-\frac{1}{2}x$的圖象與直線y=$\frac{1}{2}$x+b沒有交點(diǎn),則b的取值范圍是( 。
A.(-∞,0]B.(-∞,1]C.(0,1)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)數(shù)列{an}滿足an+1=an2-an+1(n∈N*),Sn為{an}的前n項(xiàng)和.證明:對(duì)任意n∈N*,
(I)當(dāng)0≤a1≤1時(shí),0≤an≤1;
(II)當(dāng)a1>1時(shí),an>(a1-1)a1n-1;
(III)當(dāng)a1=$\frac{1}{2}$時(shí),n-$\sqrt{2n}$<Sn<n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知實(shí)數(shù)a,b滿足0<a<1,-1<b<1,則函數(shù)y=$\frac{1}{3}$ax3+ax2+b有三個(gè)零點(diǎn)的概率為(  )
A.$\frac{5}{16}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=lnx+$\frac{a}{x}$.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若對(duì)任意x>0,均有x(2lna-lnx)≤a恒成立,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),f(0)=0若對(duì)任意x∈R,都有f(x)>f'(x)+1,則使得f(x)+ex<1成立的x的取值范圍為(  )
A.(0,+∞)B.(-∞,0)C.(-1,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=|{2x-1}|+x+\frac{1}{2}$的最小值為m.
(1)求m的值;
(2)若a,b,c是正實(shí)數(shù),且a+b+c=m,求證:2(a3+b3+c3)≥ab+bc+ca-3abc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=2$\sqrt{3}$,∠BAC=30°,且$\overrightarrow{AD}$+2$\overrightarrow{BD}$=0,則$\overrightarrow{AC}$•$\overrightarrow{CD}$等于( 。
A.18B.9C.-8D.-6

查看答案和解析>>

同步練習(xí)冊(cè)答案