A. | (0,+∞) | B. | (-∞,0) | C. | (-1,+∞) | D. | (-∞,1) |
分析 構(gòu)造函數(shù):g(x)=$\frac{f(x)-1}{{e}^{x}}$,g(0)=$\frac{0-1}{{e}^{0}}$=-1.對(duì)任意x∈R,都有f(x)>f'(x)+1,可得g′(x)=$\frac{{f}^{′}(x)+1-f(x)}{{e}^{x}}$<0,函數(shù)g(x)在R單調(diào)遞減,利用其單調(diào)性即可得出.
解答 解:構(gòu)造函數(shù):g(x)=$\frac{f(x)-1}{{e}^{x}}$,g(0)=$\frac{0-1}{{e}^{0}}$=-1.
∵對(duì)任意x∈R,都有f(x)>f'(x)+1,
∴g′(x)=$\frac{{f}^{′}(x){e}^{x}-[f(x)-1]{e}^{x}}{({e}^{x})^{2}}$=$\frac{{f}^{′}(x)+1-f(x)}{{e}^{x}}$<0,
∴函數(shù)g(x)在R單調(diào)遞減,
由f(x)+ex<1化為:g(x)=$\frac{f(x)-1}{{e}^{x}}$<-1=g(0),
∴x>0.
∴使得f(x)+ex<1成立的x的取值范圍為(0,+∞).
故選:A.
點(diǎn)評(píng) 本題考查了構(gòu)造函數(shù)法、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、不等式的解法,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (1,$\frac{3\sqrt{2}}{4}$] | C. | (2,+∞) | D. | [$\frac{3\sqrt{2}}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com