18.已知實數(shù)a,b滿足0<a<1,-1<b<1,則函數(shù)y=$\frac{1}{3}$ax3+ax2+b有三個零點的概率為( 。
A.$\frac{5}{16}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{11}{16}$

分析 由函數(shù)有極值可得b<a2,由定積分可求滿足題意的區(qū)域面積,由幾何概型的概率公式可得.

解答 解:對y=$\frac{1}{3}$ax3+ax2+b求導(dǎo)數(shù)可得y′=ax2+2ax,令ax2+2ax=0,可得x=0,或x=-2,0<a<1,
x=-2是極大值點,x=0是極小值點,函數(shù)y=$\frac{1}{3}$ax3+ax2+b有三個零點,可得$\left\{\begin{array}{l}{f(-2)>0}\\{f(0)<0}\end{array}\right.$,即:$\left\{\begin{array}{l}{-\frac{8}{3}a+4a+b=\frac{4}{3}a+b>0}\\{b<0}\end{array}\right.$,
畫出可行域如圖:滿足函數(shù)y=$\frac{1}{3}$ax3+ax2+b有三個零點,如圖深色區(qū)域,實數(shù)a,b滿足0<a<1,-1<b<1,為長方形區(qū)域,所以長方形的面積為:2,實數(shù)區(qū)域的面積為:$\frac{1}{2}×(1+\frac{1}{4})×1$=$\frac{5}{8}$
∴所求概率為P=$\frac{\frac{5}{8}}{2}$=$\frac{5}{16}$,
故選:A.

點評 本題考查幾何概型的求解,涉及導(dǎo)數(shù)求解函數(shù)的極值,函數(shù)的零點以及線性規(guī)劃的應(yīng)用,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若分別為P(1,0)、Q(2,0),R(4,0)、S(8,0)四個點各作一條直線,所得四條直線恰圍成正方形,則該正方形的面積不可能為(  )
A.$\frac{16}{17}$B.$\frac{36}{5}$C.$\frac{64}{37}$D.$\frac{196}{53}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)是奇函數(shù),當(dāng)x>0時,f(x)=x2-1,則使f(x)>0的x的取值范圍x>1或-1<x<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知三棱柱ABC-A1B1C1的側(cè)棱與底面ABC垂直,且AA1=4,AC=BC=2,∠ACB=90°.
(1)證明:AC⊥平面BCC1B1
(2)求直線BB1與平面AB1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在直角梯形ABCD中,∠A=90°,AD∥BC,BC=2AD,△ABD的面積為2,若$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{EC}$,BE⊥DC,則$\overrightarrow{DA}$$•\overrightarrow{DC}$的值為( 。
A.-2B.-2$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右頂點為A,拋物線C:y2=8ax的焦點為F,若在E的漸近線上存在點P使得PA⊥FP,則E的離心率的取值范圍是( 。
A.(1,2)B.(1,$\frac{3\sqrt{2}}{4}$]C.(2,+∞)D.[$\frac{3\sqrt{2}}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖<1>:在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于E點,把△DEC沿CE折到D′EC的位置,使D′A=2$\sqrt{3}$,如圖<2>:若G,H分別為D′B,D′E的中點.
(1)求證:GH⊥平面AD′C;
(2)求平面D′AB與平面D′CE的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2x3-3x+1,g(x)=kx+1-lnx.
(1)設(shè)函數(shù)$h(x)=\left\{\begin{array}{l}f(x),x<1\\ g(x),x≥1\end{array}\right.$,當(dāng)k<0時,討論h(x)零點的個數(shù);
(2)若過點P(a,-4)恰有三條直線與曲線y=f(x)相切,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx+2,x≥0}\\{{(\frac{1}{2})}^{x},x<0}\end{array}\right.$,若方程f(f(x))-$\frac{3}{2}$=0在實數(shù)集范圍內(nèi)無解,則實數(shù)k的取值范圍是( 。
A.(-1,-$\frac{1}{2}$)B.(-$\frac{1}{2}$,$\frac{1}{3}$)C.[0,+∞)D.(-$\frac{1}{2}$,-$\frac{1}{4}$]

查看答案和解析>>

同步練習(xí)冊答案