18.在邊長為2的正方形ABCD中,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,點(diǎn)F在線段AB上運(yùn)動,則$\overrightarrow{FD}•\overrightarrow{FE}$的最大值為(  )
A.1B.2C.3D.4

分析 先建立坐標(biāo)系,再根據(jù)向量的坐標(biāo)運(yùn)算和向量的數(shù)量積得到$\overrightarrow{FD}•\overrightarrow{FE}$=(x+1)2+1,根據(jù)二次函數(shù)的性質(zhì)即可求出最值

解答 解:以A為原點(diǎn),以AB,AD所在的直線為x,y軸,建立如圖所示的坐標(biāo)系,
則A(0,0),B(2,0),D(0,2),C(2,2),
∵$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,
∴E(2,1),
∵點(diǎn)F在線段AB上運(yùn)動,不妨設(shè)F(x,0),0≤x≤2,
∴$\overrightarrow{FD}$=(x,-2),$\overrightarrow{FE}$=(x-2,-1),
∴$\overrightarrow{FD}•\overrightarrow{FE}$=x(x-2)+2=x2-2x+2=(x+1)2+1,
當(dāng)x=0時,有最大值,最大值為2,
故選:B.

點(diǎn)評 本題考查了向量的坐標(biāo)運(yùn)算和向量的數(shù)量積以及二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{y≤x}\\{y≥\frac{1}{2}x}\\{x+y≤2}\end{array}\right.$,則目標(biāo)函數(shù)z=x+y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知命題p:?x∈R,x2+2ax+a≤0,則命題p的否定是?x∈R,x2+2ax+a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“石頭、剪刀、布”,又稱“猜丁殼”,是一種流傳多年的猜拳游戲,起源于中國,然后傳到日本、朝鮮等地,隨著亞歐貿(mào)易的不斷發(fā)展,它傳到了歐洲,到了近代逐漸風(fēng)靡世界.其游戲規(guī)則是:出拳之前雙方齊喊口令,然后在話音剛落時同時出拳,握緊的拳頭代表“石頭”,食指和中指伸出代表“剪刀”,五指伸開代表“布”.“石頭”勝“剪刀”、“剪刀”勝“布”、而“布”又勝過“石頭”.若所出的拳相同,則為和局.小千和大年兩位同學(xué)進(jìn)行“五局三勝制”的“石頭、剪刀、布”游戲比賽,則小千和大年比賽至第四局小千勝出的概率是( 。
A.$\frac{1}{27}$B.$\frac{2}{27}$C.$\frac{2}{81}$D.$\frac{8}{81}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)m∈R,過定點(diǎn)A的動直線x+my=0和過定點(diǎn)B的動直線mx-y-m+3=0交于點(diǎn)P(x,y),(點(diǎn)P與點(diǎn)A,B不重合),則△PAB的面積最大值是(  )
A.$2\sqrt{5}$B.5C.$\frac{5}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=-2tan(2x+φ)(|φ|<π),若$f(\frac{π}{16})=-2$,則f(x)的一個單調(diào)遞減區(qū)間是( 。
A.$(\frac{3π}{16},\frac{11π}{16})$B.$(\frac{π}{16},\frac{9π}{16})$C.$(-\frac{3π}{16},\frac{5π}{16})$D.$(\frac{π}{16},\frac{5π}{16})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,若a1=-2014,$\frac{{S}_{2014}}{2014}$-$\frac{{S}_{2008}}{2008}$=6,則S2017=4034.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列$\sqrt{3},3,\sqrt{15}$,…,$\sqrt{3(2n-1)}$,那么9是數(shù)列的第14項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.下表數(shù)據(jù)為某地區(qū)某基地某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)及對應(yīng)銷售價格y(單位:萬元/噸).
x123
y543
(1)若y與x有較強(qiáng)的線性相關(guān)關(guān)系,請用最小二乘法求出y關(guān)與x的線性回歸方程$\widehaty=\widehatbx+\widehata$;
(2)若每噸該農(nóng)產(chǎn)品的成本為1萬元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少噸時,年利潤z最大?最大利潤是多少?
參考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}=\frac{{\sum_{i=1}^n{({{x_i}{y_i}})}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

同步練習(xí)冊答案