15.不等式|x-1|≤$\frac{1}{12}$的解集為{x|n≤x≤m}
(1)求實(shí)數(shù)m,n;
(2)若實(shí)數(shù)a,b滿足:|a+b|<m,|a-b|<n,求證:|b|<$\frac{5}{18}$.

分析 (1)求出不等式的解集,根據(jù)對應(yīng)關(guān)系求出m,n的值即可;(2)根據(jù)絕對值不等式的性質(zhì)證明即可.

解答 解:(1)由|x-$\frac{1}{4}$|≤$\frac{1}{12}$得-$\frac{1}{12}$≤x-$\frac{1}{4}$≤$\frac{1}{12}$,
即$\frac{1}{6}$≤x≤$\frac{1}{3}$,
∵不等式|x-$\frac{1}{4}$|≤$\frac{1}{12}$的解集為{x|n≤x≤m},
∴n=$\frac{1}{6}$,m=$\frac{1}{3}$,
(2)證明:3|b|=|3b|=|2(a+b)-(2a-b)|≤2|a+b|+|2a-b|,
∵|a+b|<m,|2a-b|<n,∴|a+b|<$\frac{1}{3}$,|2a-b|<$\frac{1}{6}$,
則3|b|≤2|a+b|+|2a-b|<2×$\frac{1}{3}$+$\frac{1}{6}$=$\frac{5}{6}$,即|b|<$\frac{5}{18}$.

點(diǎn)評 本題考查了解絕對值不等式問題,考查絕對值的性質(zhì),是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.tan27°+tan33°+$\sqrt{3}$tan27°tan33°=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)=x-\frac{1}{x^m}$,且$f(2)=\frac{3}{2}$.
(1)求f(x)的解析式;
(2)證明函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù);
(3)當(dāng)x∈[-5,-3]時(shí),求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|x2-x-2<0},$B=\left\{{x|{{log}_4}x<\frac{1}{2}}\right\}$,則( 。
A.A∩B=∅B.UA∪B=RC.A∩B=BD.A∪B=B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.福利彩票“雙色球”中紅色球的號(hào)碼由編號(hào)為01,02,…,33的33個(gè)個(gè)體組成,小明利用下面的隨機(jī)數(shù)表選取6組數(shù)作為6個(gè)紅色球的編號(hào),選取方法是從隨機(jī)數(shù)表第1行的第7列數(shù)字開始由左到右依次讀取數(shù)據(jù),則選出來的第3個(gè)紅色球的編號(hào)為(  )
49 54 43 54 15 37 17 93 39 78 87 35 20 96 43 84 17 34 91 64
57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
A.06B.17C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)數(shù)列{an}的前n項(xiàng)和為${S_n}=2{n^2}-1$,數(shù)列{bn}的前n項(xiàng)和為Qn=2bn-2.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)設(shè)${c_n}=\frac{a_n}{b_n}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$α∈(\frac{π}{3},π)$,且$sin(α+\frac{π}{6})=\frac{3}{5}$,則cosα=( 。
A.$\frac{{3-4\sqrt{3}}}{10}$B.$\frac{{3+4\sqrt{3}}}{10}$C.$\frac{{-3-4\sqrt{3}}}{10}$D.$\frac{{-3+4\sqrt{3}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖2所示的程序框圖,若輸出S=7,則輸入k(k∈N*)的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,已知等腰梯形ABCD中,AD∥BC,BC=2AD=2AB=4,將△ABC沿BD折到△A′BD的位置,使平面A′BD⊥平面CBD.
(Ⅰ)求證:CD⊥A′B;
(Ⅱ)試在線段A′C上確定一點(diǎn)P,使得三棱錐P-BDC的體積為$\frac{4\sqrt{3}}{9}$.

查看答案和解析>>

同步練習(xí)冊答案