【題目】斜三棱柱ABC﹣A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,且平面ACC1A1⊥平面BCC1B1 , 則A1B的長度為 .
【答案】
【解析】取CC1中點M連接A1M與BM,
∵斜三棱柱ABC﹣A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,
∴三角形A1CC1是等邊三角形,四邊形ACC1A1≌四邊形BCC1B1
∴A1M⊥CC1 ,
∴BM⊥CC1 ,
∴A1M=BM=
又平面ACC1A1⊥平面BCC1B1 ,
∴角A1MB是二面角的平面角,故其是直角
∴在直角三角形A1MB由勾股定理可算得
A1B=
故應填
【考點精析】本題主要考查了平面與平面垂直的性質(zhì)的相關(guān)知識點,需要掌握兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設命題p:實數(shù)x滿足 <0,其中a>0,命題q:實數(shù)x滿足 .
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 在點(1,f(1))處的切線與x軸平行.
(1)求實數(shù)a的值及f(x)的極值;
(2)若對任意x1 , x2∈[e2 , +∞),有| |> ,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點M、N分別是面對角線A1B與B1D1的中點,設 = , = , = .
(1)以{ , , }為基底,表示向量 ;
(2)求證:MN∥平面BCC1B1;
(3)求直線MN與平面A1BD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,其中.
(1)當時,求函數(shù)的值域;
(2)若對任意,均有,求的取值范圍;
(3)當時,設,若的最小值為,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“真人秀”熱潮在我國愈演愈烈,為了了解學生是否喜歡某“真人秀”節(jié)目,在某中學隨機調(diào)查了110名學生,得到如下列聯(lián)表:
男 | 女 | 總計 | |
喜歡 | 40 | 20 | 60 |
不喜歡 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由算得.
附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A. 在犯錯誤的概率不超過的前提下,認為“喜歡該節(jié)目與性別有關(guān)”
B. 在犯錯誤的概率不超過的前提下,認為“喜歡該節(jié)目與性別無關(guān)”
C. 有以上的把握認為“喜歡該節(jié)目與性別有關(guān)”
D. 有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)一次音樂獲得10分,出現(xiàn)兩次音樂獲得20分,出現(xiàn)三次音樂獲得100分,沒有出現(xiàn)音樂則扣除200分(即獲得﹣200分).設每次擊鼓出現(xiàn)音樂的概率為 ,且各次擊鼓出現(xiàn)音樂相互獨立.
(1)設每盤游戲獲得的分數(shù)為X,求X的分布列和數(shù)學期望E(X).
(2)玩三盤游戲,至少有一盤出現(xiàn)音樂的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,M、N分別是棱C1D1、C1C的中點.以下四個結(jié)論:
①直線AM與直線CC1相交;
②直線AM與直線BN平行;
③直線AM與直線DD1異面;
④直線BN與直線MB1異面.
其中正確結(jié)論的序號為 .
(注:把你認為正確的結(jié)論序號都填上)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為( )
A.9
B.18
C.27
D.36
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com