A. | -2 | B. | -1 | C. | 1 | D. | 2 |
分析 先根據(jù)拋物線方程求得焦點坐標(biāo),進(jìn)而設(shè)出過焦點弦的直線方程,與拋物線方程聯(lián)立消去y,根據(jù)韋達(dá)定理表示出x1+x2=2+$\frac{4}{{k}^{2}}$,x1x2=1,y1y2=-4,由$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,求得k值.
解答 解:∵拋物線的方程為y2=4x,∴F(1,0),設(shè)焦點弦方程為y=k(x-1),A(x1,y1),B(x2,y2),
代入拋物線方程得k2x2-(2k2+4)x+k2=0
由韋達(dá)定理:x1+x2=2+$\frac{4}{{k}^{2}}$,x1x2=1,y1y2=-4,y1+y2=$\frac{4}{k}$
∵M(jìn)(-1,2),$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,
∴(x1+1,y1-2)•(x2+1,y2-2)=0,
∴1-2k+k2=0,
∴k=1.
故選:C.
點評 本題主要考查了拋物線的簡單性質(zhì),考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{2}$ | B. | 2 | C. | 4 | D. | $3\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com