分析 利用誘導公式,同角三角函數(shù)基本關系式可求cosα,sinα,進而切化弦后,利用誘導公式即可計算得解.
解答 解:∵cos(π+α)=-cosα=-$\frac{1}{3}$,α∈($\frac{3π}{2}$,2π),可得:cosα=$\frac{1}{3}$,
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{2\sqrt{2}}{3}$,
∴tan($\frac{π}{2}$+α)=$\frac{sin(\frac{π}{2}+α)}{cos(\frac{π}{2}+α)}$=-$\frac{cosα}{sinα}$=$\frac{\sqrt{2}}{4}$.
故答案為:$\frac{\sqrt{2}}{4}$.
點評 本題主要考查了誘導公式,同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(cos α)>f(cos β) | B. | f(sin α)>f(sin β) | C. | f(sin α)>f(cos β) | D. | f(sin α)<f(cos β) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com