4.已知cos(π+α)=-$\frac{1}{3}$,α∈($\frac{3π}{2}$,2π),則tan($\frac{π}{2}$+α)=$\frac{\sqrt{2}}{4}$.

分析 利用誘導公式,同角三角函數(shù)基本關系式可求cosα,sinα,進而切化弦后,利用誘導公式即可計算得解.

解答 解:∵cos(π+α)=-cosα=-$\frac{1}{3}$,α∈($\frac{3π}{2}$,2π),可得:cosα=$\frac{1}{3}$,
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{2\sqrt{2}}{3}$,
∴tan($\frac{π}{2}$+α)=$\frac{sin(\frac{π}{2}+α)}{cos(\frac{π}{2}+α)}$=-$\frac{cosα}{sinα}$=$\frac{\sqrt{2}}{4}$.
故答案為:$\frac{\sqrt{2}}{4}$.

點評 本題主要考查了誘導公式,同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.正四面體ABCD的棱CD在平面α上,E為棱BC的中點,當正四面體ABCD繞CD旋直線AE與平面α所成最大角的正弦值為$\frac{\sqrt{33}}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.觀察下面的數(shù)表

該表中第6行最后一個數(shù)是126;設2016是該表的m行第n個數(shù),則m+n=507.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.記數(shù)列{an}的前n項和Sn=2n+λ.
(1)若λ=3時,求{an}的通項公式;
(2)是否存在常數(shù)λ,使得{an}為等比數(shù)列?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.計算(-8-7i)×(-3i)=-21+24i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)y=sinx•cosx的導函數(shù)為cos2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.過拋物線C:y2=4x的焦點F的直線l交C于A,B兩點,點M(-1,2),若$\overrightarrow{MA}$•$\overrightarrow{MB}$=0,則直線l的斜率k=( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知點F1是拋物線C:x2=4y的焦點,點F2為拋物線C的對稱軸與其準線的交點,過F2作拋物線C的切線,切點為A,若點A恰好在以F1,F(xiàn)2為焦點的雙曲線上,則雙曲線的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知奇函數(shù)f(x)在[-1,0]上為增函數(shù),又α、β為銳角三角形兩內(nèi)角,則下列結(jié)論正確的是(  )
A.f(cos α)>f(cos β)B.f(sin α)>f(sin β)C.f(sin α)>f(cos β)D.f(sin α)<f(cos β)

查看答案和解析>>

同步練習冊答案