7.已知兩條平行線l1:3x+4y-4=0與l2:ax+8y+2=0之間的距離是(  )
A.1B.2C.3D.4

分析 由4a-3×8=0,解得a=6.利用平行線之間的距離公式即可得出.

解答 解:由4a-3×8=0,解得a=6.
∴l(xiāng)2的方程6x+8y+2=0化為:3x+4y+1=0.
∴兩條平行線之間的距離d=$\frac{|-4-1|}{\sqrt{{3}^{2}+{4}^{2}}}$=1.
故選:A.

點評 本題考查了平行線與斜率之間的關(guān)系、平行線之間的距離公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x3-$\frac{3}{2}{x^2}+\frac{3}{4}x+\frac{1}{8}$,則$\sum_{k=1}^{2016}{f({\frac{k}{2017}})}$的值為( 。
A.0B.504C.1008D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)y=ax2+b在點(1,3)處的切線斜率為2,則$\frac{a}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)拋物線y2=2px的焦點在直線2x+3y-4=0上,則該拋物線的準(zhǔn)線方程為( 。
A.x=-1B.x=-2C.x=-3D.x=-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知下列命題:
①命題“?x∈R,x2+1>3x“的否定是“?x∈R,x2+1<3x“;
②已知p,q為兩個命題,若“p∨q”為假命題,則“(?p)∧(?q)為真命題”;
③對于非零向量a,b,“a+b=0“是“a∥b“的充要條件;
④對于非零向量a,b,若|a|=|b|,則a=b或a=-b.
其中真命題共有(  )個.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知R上的函數(shù),$f(x)=\left\{\begin{array}{l}{log_2}^{(3-x)}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(x≤0)\\ f(x-1)-f(x-2)\;(x>0)\end{array}\right.$,則f(2017)=log23-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若向量$\overrightarrow a=({1,0}),\overrightarrow b=({2,1}),\overrightarrow c=({x,1})$滿足條件$3\overrightarrow a-\overrightarrow b$與$\overrightarrow c$垂直,則x=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=(x2-ax-a)ex
(1)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(2)若a∈(0,2),對于任意x1,x2∈[-4,0],都有$|{f({x_1})-f({x_2})}|<4{e^{-2}}+m{e^a}$恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x2,x∈[2m,m+6]是偶函數(shù),則實數(shù)m的值為( 。
A.-4B.-2C.-1D.6

查看答案和解析>>

同步練習(xí)冊答案