A. | $\frac{1}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{30}$ |
分析 把函數(shù)f(x)可以看作是動(dòng)點(diǎn)M(x,ln3x)與動(dòng)點(diǎn)N(a,3a)之間距離的平方,利用導(dǎo)數(shù)求出曲線y=ln3x上與直線y=3x平行的切線的切點(diǎn),得到曲線上點(diǎn)到直線距離的最小值,結(jié)合題意可得只有切點(diǎn)到直線距離的平方等于$\frac{1}{10}$,然后由兩直線斜率的關(guān)系列式求得實(shí)數(shù)a的值.
解答 解:函數(shù)f(x)=x2+ln23x-2a(x+3ln3x)+10a2=(ln3x-3a)2+(x-a)2,
函數(shù)f(x)可以看作是動(dòng)點(diǎn)M(x,ln3x)與動(dòng)點(diǎn)N(a,3a)之間距離的平方,
動(dòng)點(diǎn)M在函數(shù)y=ln3x的圖象上,N在直線y=3x的圖象上,
問題轉(zhuǎn)化為求直線上的動(dòng)點(diǎn)到曲線的最小距離,
由y=ln3x得,y'=$\frac{1}{x}$=3,解得x=$\frac{1}{3}$,
∴曲線上點(diǎn)M($\frac{1}{3}$,0)到直線y=3x的距離最小,
最小距離d=$\frac{1}{\sqrt{10}}$,
則f(x)≥$\frac{1}{10}$,
根據(jù)題意,要使f(x0)≤$\frac{1}{10}$,
則f(x0)=$\frac{1}{10}$,此時(shí)N恰好為垂足,
由kMN=$\frac{3a-0}{a-\frac{1}{3}}$=-$\frac{1}{3}$,
解得a=$\frac{1}{30}$.
故選:D.
點(diǎn)評 本題考查利用導(dǎo)數(shù)求曲線上過某點(diǎn)切線的斜率,考查了數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了點(diǎn)到直線的距離公式的應(yīng)用,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 3個(gè) | C. | 2個(gè) | D. | 1個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{4}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{2π}{3}$ | C. | π | D. | 2π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com