考點:函數(shù)的最值及其幾何意義
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用,二項式定理
分析:運用二項式定理,將F(x)展開,合并得到,F(xiàn)(x)=
(x2n+)+
(
x2n-3+)+…+
(x2n-3r+)+…+
(xn+),再令g(x)=
xn+(x>0),運用導(dǎo)數(shù)求出單調(diào)性和最值,
即可得到F(x)在[
,1)上遞減,在(1,2]上遞增,進而得到F(x)的最值,進而得到乘積.
解答:
解:由二項式定理,可得,
(x
2+
)
n=
x2n+
x2n-2•+…+
(x2)n-r()r+…+
.
(
+x)
n=
()n+
()n-1x+…+
()n-rxr+…+
xn.
則F(x)=
(x2n+)+
(
x2n-3+)+…+
(x2n-3r+)+…+
(xn+),
令g(x)=
xn+(x>0),g′(x)=nx
n-1-
=n
•,
g′(x)>0,即有x
2n>1,即x>1;g′(x)<0,即有x
2n<1,即0<x<1.
即有g(shù)(x)在(0,1)上遞減,在(1,+∞)上遞增,
則F(x)在[
,1)上遞減,在(1,2]上遞增,
即有x=1取最小值,且為2
n+1,
由于F(
)=F(2)=(
)
n+(
)
n,且為最大值,
則最大值與最小值的積為:2
n+1•[(
)
n+(
)
n]=2[9
n+(
)
n].
故答案為:2[9
n+(
)
n].
點評:本題考查二項式定理及運用,考查導(dǎo)數(shù)的運用:判斷單調(diào)性和求極值、最值,考查運算能力,屬于難題.