【題目】在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθ+ρsinθ1,曲線C的極坐標(biāo)方程為ρsin2θ8cosθ

1)求直線l與曲線C的直角坐標(biāo)方程;

2)設(shè)點(diǎn)M0,1),直線l與曲線C交于不同的兩點(diǎn)P,Q,求|MP|+|MQ|的值.

【答案】(1)直線l的直角坐標(biāo)方程為x+y1,曲線C的直角坐標(biāo)方程為y28x(2)

【解析】

1代入極坐標(biāo)方程,即可求解;

2)把直線方程化為具有幾何意義的參數(shù)方程,代入曲線C方程,由直線參數(shù)的幾何意義,即可求解.

1)直線l的極坐標(biāo)方程為ρcosθ+ρsinθ1,

轉(zhuǎn)換為:x+y1,

曲線C的極坐標(biāo)方程為ρsin2θ8cosθ

轉(zhuǎn)換為:y28x;

2)考慮直線方程x+y1,

則其參數(shù)方程為t為參數(shù)),

代入曲線方程y28x,

得到:,

則有:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中e為自然對(duì)數(shù)的底數(shù),m、n為常數(shù)),函數(shù)定義為:對(duì)每一個(gè)給定的實(shí)數(shù)x,

1)當(dāng)m、n滿足什么條件時(shí),對(duì)所有的實(shí)數(shù)x恒成立;

2)設(shè)ab是兩個(gè)實(shí)數(shù),滿足m,當(dāng)時(shí),求函數(shù)在區(qū)間的上的單調(diào)增區(qū)間的長(zhǎng)度之和(用含a、b的式子表示)(閉區(qū)間的長(zhǎng)度定義為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面ABCD為直角梯形,AD//BC,且,BCDC,BAD=60°,平面PAD底面ABCD,E為AD的中點(diǎn),PAD為等邊三角形,M是棱PC上的一點(diǎn),設(shè)(M與C不重合).

1)求證:CDDP;

(2)若PA平面BME,求k的值;

3)若二面角M﹣BE﹣A的平面角為150°,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的標(biāo)準(zhǔn)方程為,該橢圓經(jīng)過(guò)點(diǎn),且離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓長(zhǎng)軸上一點(diǎn)作兩條互相垂直的弦.若弦的中點(diǎn)分別為,證明:直線恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)滿足,且.

1)求函數(shù)的解析式;

2)求在區(qū)間上的最大值和最小值;

3)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)

(1)求的單調(diào)區(qū)間;

(2)求函數(shù)上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位共有10名員工,他們某年的收入如下表:

員工編號(hào)

1

2

3

4

5

6

7

8

9

10

年薪(萬(wàn)元)

4

4.5

6

5

6.5

7.5

8

8.5

9

51

1)求該單位員工當(dāng)年年薪的平均值和中位數(shù);

2)已知員工年薪收入與工作年限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪分別為4萬(wàn)元、5.5萬(wàn)元、6萬(wàn)元、8.5萬(wàn)元,預(yù)測(cè)該員工第六年的年薪為多少?

附:線性回歸方程中系數(shù)計(jì)算公式分別為:,其中、為樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C(ab0)過(guò)點(diǎn),離心率為.

1)求橢圓C的方程;

2)若斜率為的直線l與橢圓C交于A,B兩點(diǎn),試探究是否為定值?若是定值,則求出此定值;若不是定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下列不等式的證法,再解決后面的問(wèn)題:

已知,求證:.

證明:構(gòu)造函數(shù),

.

因?yàn)閷?duì)一切,恒有

所以,從而得.

1)若,,請(qǐng)寫(xiě)出上述結(jié)論的推廣式;

2)參考上述證法,對(duì)你推廣的結(jié)論加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案