A. | λ≤3 | B. | λ≤4 | C. | 2≤λ≤3 | D. | 3≤λ≤4 |
分析 不等式nlog2(Tn+4)-λbn+7≥3n化為n2-n+7≥λ(n+1),可得λ≤$\frac{{n}^{2}-n+7}{n+1}$對一切n∈N*恒成立,利用不等式,即可得出結(jié)論.
解答 解∵an=2n+1,
∴Tn=$\frac{4(1-{2}^{n})}{1-2}$=2n+2-4.
不等式nlog2(Tn+4)-λ(n+1)+7≥3n化為n2-n+7≥λ(n+1),
∵n∈N*,
∴λ≤$\frac{{n}^{2}-n+7}{n+1}$對一切n∈N*恒成立.
而$\frac{{n}^{2}-n+7}{n+1}$=$\frac{(n+1)^{2}-3(n+1)+9}{n+1}$=(n+1)+$\frac{9}{n+1}$-3≥2$\sqrt{(n+1)•\frac{9}{n+1}}$-3=3,
當(dāng)且僅當(dāng)n+1=$\frac{9}{n+1}$即n=2時(shí)等號成立,
∴λ≤3,
故選:A.
點(diǎn)評 本題考查數(shù)列的通項(xiàng)于求和,突出考查基本不等式的運(yùn)用,考查運(yùn)算、分析、求解的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a,b,c均不為0 | B. | a,b,c中至多有一個(gè)為0 | ||
C. | a,b,c中至少有一個(gè)為0 | D. | a,b,c中至少有一個(gè)不為0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,3} | B. | {2,3,4} | C. | {0,1,2,3} | D. | {0,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A${\;}_{4}^{3}$ | B. | C${\;}_{4}^{3}$ | C. | 34 | D. | 43 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{2}}}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{a-b}{c}$>0 | B. | ac2>bc2 | C. | (a+b)( $\frac{1}{a}$+$\frac{1}$)>4 | D. | a2+b2+2>2a+2b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{3+2\sqrt{2}}}{4}$ | B. | $2\sqrt{2}$ | C. | $\frac{{2+2\sqrt{2}}}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com