7.若4個(gè)人報(bào)名參加3項(xiàng)體育比賽,每個(gè)人限報(bào)一項(xiàng),則不同的報(bào)名方法的種數(shù)有( 。
A.A${\;}_{4}^{3}$B.C${\;}_{4}^{3}$C.34D.43

分析 根據(jù)題意,分析可得4人中,每人都有3種情況,由分步計(jì)數(shù)原理計(jì)算可得答案.

解答 解:根據(jù)題意,4個(gè)人報(bào)名參加3項(xiàng)體育比賽,每個(gè)人限報(bào)一項(xiàng),
則每人都有3項(xiàng)體育比賽可選,即每人都有3種情況,
則不同的報(bào)名方法的種數(shù)有3×3×3×3=34種;
故選:C.

點(diǎn)評(píng) 本題考查分步計(jì)數(shù)原理的應(yīng)用,注意沒有要求每一項(xiàng)都必須有人報(bào)名.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.$f(x)=Asin(ωx+φ)(A>0,|φ|<\frac{π}{2})$的圖象如圖所示,為了得到f(x)的圖象,則只要將g(x)=cos2x的圖象(  )
A.向右平移$\frac{π}{12}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{12}$個(gè)單位長(zhǎng)度D.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,已知$\overrightarrow{CA}=\overrightarrow a$,$\overrightarrow{CB}=\overrightarrow b$,AD=2DB,用$\overrightarrow a$、$\overrightarrow b$表示$\overrightarrow{DC}$為( 。
A.$\overrightarrow{DC}=-\frac{5}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b$B.$\overrightarrow{DC}$=$-\frac{1}{2}\overrightarrow a-\frac{1}{3}\overrightarrow b$C.$\overrightarrow{DC}$=$-\frac{2}{3}\overrightarrow a-\frac{1}{3}\overrightarrow b$D.$\overrightarrow{DC}=-\frac{1}{3}\overrightarrow a-\frac{2}{3}\overrightarrow b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=2xlnx,g(x)=x3+ax2-x+2.
(1)如果函數(shù)g(x)的單調(diào)遞減區(qū)間為$(-\frac{1}{3},1)$,求函數(shù)g(x)的解析式;
(2)在(1)的條件下,求函數(shù)y=g(x)的圖象在點(diǎn)P(-1,g(-1))處的切線方程;
(3)已知不等式f(x)≤g'(x)+2恒成立,若方程aea-m=0恰有兩個(gè)不等實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.與-30°終邊相同的角是(  )
A.-330°B.150°C.30°D.330°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.?dāng)?shù)列an=2n+1,其前n項(xiàng)和為Tn,若不等式nlog2(Tn+4)-λ(n+1)+7≥3n對(duì)一切n∈N*恒成立,則實(shí)數(shù)λ的取值范圍為( 。
A.λ≤3B.λ≤4C.2≤λ≤3D.3≤λ≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期為π,且其圖象關(guān)于直線$x=\frac{π}{6}$對(duì)稱.
(1)求ω和φ的值;
(2)若$f(\frac{α}{2}-\frac{π}{12})=\frac{3}{5}$,α為銳角,求$cos(α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.函數(shù)f(x)=x3-3x-1,若對(duì)于區(qū)間[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,則實(shí)數(shù)t的最小值是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,已知橢圓C的中心在原點(diǎn),它的一個(gè)焦點(diǎn)與拋物線${y^2}=4\sqrt{6}x$的焦點(diǎn)相同,又橢圓C上有一點(diǎn)M(2,1),直線l平行于OM且與橢圓C交于A,B兩點(diǎn),連接MA,MB.
(1)求橢圓C的方程;
(2)求證:直線MA,MB與x軸所構(gòu)成的三角形總是以x軸上所在線段為底邊的等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案