給出下列定義:
①對于函數(shù)f(x),若存在x0∈R使f(x0)=x0成立,則稱x0為函數(shù)f(x)的不動(dòng)點(diǎn);
②若函數(shù)的定義域區(qū)間與值域區(qū)間完全相同,則稱該區(qū)間為函數(shù)的保值區(qū)間.
設(shè)函數(shù)f(x)=x2-2ax+a2+a(x∈R),則該函數(shù)有( 。
A、一個(gè)不動(dòng)點(diǎn)和一個(gè)保值區(qū)間
B、兩個(gè)不動(dòng)點(diǎn)和一個(gè)保值區(qū)間
C、兩個(gè)不動(dòng)點(diǎn)和兩個(gè)保值區(qū)間
D、兩個(gè)不動(dòng)點(diǎn)和三個(gè)保值區(qū)間
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意解方程x2-2ax+a2+a=x可得不動(dòng)點(diǎn),由不動(dòng)點(diǎn)可求函數(shù)的保值區(qū)間.
解答: 解:由題意,f(x)=x2-2ax+a2+a,假設(shè)存在x0,f(x0)=x0成立,
即判斷方程x2-2ax+a2+a=x的根的個(gè)數(shù),
因?yàn)椤?(2a+1)2-4(a2+a)=1>0,
故有兩個(gè)不動(dòng)點(diǎn)a,a+1;
函數(shù)f(x)=x2-2ax+a2+a有三個(gè)保值區(qū)間:
[a,a+1],[a,+∞),[a+1,+∞);
故選D.
點(diǎn)評:本題考查了學(xué)生對于新知識的接受能力與應(yīng)用能力,同時(shí)考查了轉(zhuǎn)化能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,平行四邊形ABCD中,AB=2,AD=2
2
,且∠BAD=45°,以BD為折線,把△ABD折起,使平面ABD⊥平面CBD,連接AC.

(1)求異面直線AD與BC所成角大;
(2)求二面角B-AC-D平面角的大; 
(3)求四面體ABCD外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在(-1,1)上的奇函數(shù),則f(0)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
4
-
y2
m
=1的離心率為
7
2
,則m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2|,g(x)=-|x-3|+m.
(Ⅰ)解不等式f(x)>x+1;
(Ⅱ)若y=f(x)與y=g(x)圖象上有公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax-a-x(a>0且a≠1).
(Ⅰ)若f(1)>0,試求不等式f(x2+2x)+f(x-4)>0的解集;
(Ⅱ)若f(1)=
3
2
,且g(x)=a2x+a-2x-2mf(x),且g(x)在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線a,b分別是長方體相鄰兩個(gè)面上的對角線所在直線,則a,b位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用單調(diào)性的定義證明函數(shù)f(x)=
x+2
x+1
在(-1,+∞)上是減函數(shù),并求函數(shù)f(x)在[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的通項(xiàng)公式是an=(-1)n(3n-2),則a1+a2+…+a100=(  )
A、150B、120
C、-120D、-150

查看答案和解析>>

同步練習(xí)冊答案