分析 α,β的范圍得出α-β的范圍,然后利用同角三角函數(shù)間的基本關(guān)系,由sin(α-β)和sinα的值,求出cos(α-β)和cosα的值,然后由β=α-(α-β),把所求的式子利用兩角差的余弦函數(shù)公式化簡后,將各自的值代入即可求出值.
解答 解:由$sinα=\frac{{\sqrt{5}}}{5},sin({α-β})=-\frac{{\sqrt{10}}}{10},α,β$均為銳角,
得到α-β∈(-$\frac{π}{2}$,$\frac{π}{2}$),
所以cos(α-β)=$\sqrt{1-si{n}^{2}(α-β)}$=$\frac{3\sqrt{10}}{10}$,cosα=$\sqrt{1-si{n}^{2}α}$=$\frac{2\sqrt{5}}{5}$,
則cosβ=cos[α-(α-β)]
=cos(α-β)cosα+sin(α-β)sinα=$\frac{3\sqrt{10}}{10}$×$\frac{2\sqrt{5}}{5}$+$\frac{\sqrt{5}}{5}×$(-$\frac{\sqrt{10}}{10}$)=$\frac{{\sqrt{2}}}{2}$.
故答案為:$\frac{{\sqrt{2}}}{2}$.
點(diǎn)評 此題考查學(xué)生靈活運(yùn)用同角三角函數(shù)間的基本關(guān)系及兩角和與差的正弦函數(shù)公式化簡求值,是一道基礎(chǔ)題.做題時(shí)注意角度的變換.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5π}{6}$ | B. | $\frac{5π}{18}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{18}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com