6.已知點(diǎn)P(x,y)的坐標(biāo)滿足條件$\left\{\begin{array}{l}{x≥1}\\{y≥x-1}\\{x+3y-5≤0}\end{array}\right.$,那么點(diǎn)P到直線3x-4y-13=0的最小值為2.

分析 畫(huà)出約束條件的可行域,判斷P的位置,利用點(diǎn)到直線的距離公式求解即可.

解答 解:由約束條件$\left\{\begin{array}{l}{x≥1}\\{y≥x-1}\\{x+3y-5≤0}\end{array}\right.$作出可行域如圖,

由圖可知,當(dāng)P與A(1,0)重合時(shí),P到直線3x-4y-13=0的距離最小為d=$\frac{|3-13|}{\sqrt{{3}^{2}+({-4)}^{2}}}$=2.
故答案為:2.

點(diǎn)評(píng) 本題考查線性規(guī)劃的解得應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,角A,B,C對(duì)應(yīng)的邊分別為a,b,c,若a,b,c等比,則下列結(jié)論一定正確的是( 。
A.A是銳角B.B是銳角
C.C是銳角D.△ABC是鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知實(shí)數(shù)m∈[0,1],n∈[0,2],則關(guān)于x的一元二次方程4x2+4mx-n2+2n=0有實(shí)數(shù)根的概率是( 。
A.1-$\frac{π}{4}$B.$\frac{π}{4}$C.$\frac{π-3}{2}$D.$\frac{π}{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)是直角三角形的3個(gè)頂點(diǎn),直線l:y=-x+3與橢圓E有且只有一個(gè)公共點(diǎn)T.設(shè)O是坐標(biāo)原點(diǎn),直線l'平行于OT,與橢圓E交于不同的兩點(diǎn)A、B,且與直線l交于點(diǎn)P.若存在常數(shù)λ,使得|PT|2=λ|PA|•|PB|,則λ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)函數(shù)f(x)=ex+ax+b在點(diǎn)(0,f(0))處的切線方程為x+y+1=0.
(1)求a,b值,并求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)x≥0時(shí),f(x)>x2-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,A=60°,a=$\sqrt{7}$,三角形面積為$\frac{3\sqrt{3}}{2}$,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x),g(x)滿足當(dāng)x∈R時(shí),f′(x)g(x)+f(x)′g(x)>0,若a>b,則有( 。
A.f(a)g(a)=f(b)g(b)B.f(a)g(a)>f(b)g(b)
C.f(a)g(a)<f(b)g(b)D.f(a)g(a)與f(b)g(b)大小關(guān)系不定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知|$\overrightarrow a$|=$\sqrt{10}$,$\overrightarrow a$•$\overrightarrow b$=-$\frac{{5\sqrt{30}}}{2}$,且(${\overrightarrow a$-$\overrightarrow b}$)•(${\overrightarrow a$+$\overrightarrow b}$)=-15,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為(  )
A.$\frac{2π}{3}$B.$\frac{3π}{4}$C.$\frac{5π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.直線x+y=2k-1被圓x2+y2=1截得的弦長(zhǎng)為$\sqrt{2}$,則k=0或1.

查看答案和解析>>

同步練習(xí)冊(cè)答案