11.在△ABC中,A=60°,a=$\sqrt{7}$,三角形面積為$\frac{3\sqrt{3}}{2}$,求b,c.

分析 利用已知及三角形面積公式可求bc=6,利用余弦定理可得b+c=5,聯(lián)立即可解得b,c的值.

解答 解:∵A=60°,a=$\sqrt{7}$,三角形面積為$\frac{3\sqrt{3}}{2}$,
∴由S△ABC=$\frac{1}{2}$bcsinA,可得:$\frac{3\sqrt{3}}{2}$=$\frac{1}{2}×bc×\frac{\sqrt{3}}{2}$,可得:bc=6,①
由a2=b2+c2-2bccosA,可得:7=b2+c2-bc=(b+c)2-3bc=(b+c)2-18,可得:b+c=5,②
∴聯(lián)立①②,可得:b=3,c=1或b=1,c=3.

點評 本題主要考查了三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了配方法的應(yīng)用和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知極坐標(biāo)系的極點在直角坐標(biāo)系的原點,極軸與x軸的正半軸重合.曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=3,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-\sqrt{3}t\\ y=1+t\end{array}\right.$(t為參數(shù),t∈R),
(1)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)試求曲線C上的點到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.求值:4cos50°-tan40°=( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$-1D.$\frac{\sqrt{2}+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.對于函數(shù)f(x),若存在x0∈R,使f(x0)=x0成立,則稱x0為f(x)的不動點.如果函數(shù)f(x)=$\frac{{x}^{2}+a}{bx-c}$(b,c∈N*)有且僅有兩個不動點0,2,且f(-2)<-$\frac{1}{2}$.
(1)試求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知各項不為1的數(shù)列{an}滿足${4S}_{n}•f(\frac{1}{{a}_{n}})=1$,求證:-$\frac{1}{{a}_{n+1}}$<ln$\frac{n+1}{n}$<-$\frac{1}{{a}_{n}}$;
(3)在(2)中,設(shè)bn=-$\frac{1}{{a}_{n}}$,Tn為數(shù)列{bn}的前n項和,求證:T2016-1<ln2016<T2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點P(x,y)的坐標(biāo)滿足條件$\left\{\begin{array}{l}{x≥1}\\{y≥x-1}\\{x+3y-5≤0}\end{array}\right.$,那么點P到直線3x-4y-13=0的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)圖象與x軸均有交點,其中不能用二分法求函數(shù)零點近似值的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,cosA=-$\frac{5}{13}$,cosB=$\frac{4}{5}$.
(Ⅰ)求sinC的值;
(Ⅱ)若AB邊的長為11,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x+1|-|x|+a.
(1)若a=0,求不等式f(x)≥x的解集;
(2)若對任意x∈R,f(x)≥0恒成立,求a的范圍;
(3)若方程f(x)=x有三個不同的解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=x2+$\sqrt{{x^2}-1}$中y的取值范圍是(  )
A.y≥0B.y≥1C.$y≥\frac{3}{4}$D.$\frac{3}{4}≤y≤1$

查看答案和解析>>

同步練習(xí)冊答案