已知關(guān)于x的方程|
x(|x+3|-3)
2-x2
+2a|=a2-3有奇數(shù)個(gè)解,則a的值為
 
考點(diǎn):根的存在性及根的個(gè)數(shù)判斷
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=|
x(|x+3|-3)
2-x2
+2a|-a2+3,可化為f(x)=|
x2
2-x2
+2a|-a2+3是偶函數(shù),從而可得f(0)=0,從而解出a.
解答: 解:令f(x)=|
x(|x+3|-3)
2-x2
+2a|-a2+3,
則函數(shù)的定義域?yàn)椋?span id="5muf5pf" class="MathJye">-
2
,
2
),
此時(shí)f(x)=|
x(x+3-3)
2-x2
+2a|-a2+3=|
x2
2-x2
+2a|-a2+3,
易知f(x)在(-
2
,
2
)是偶函數(shù),
又∵關(guān)于x的方程|
x(|x+3|-3)
2-x2
+2a|=a2-3有奇數(shù)個(gè)解,
則f(0)=0,即|2a|-a2+3=0,
解得a=±3.
故答案為:±3.
點(diǎn)評(píng):本題考查了方程的根與函數(shù)的零點(diǎn)之間的關(guān)系,同時(shí)考查了偶函數(shù)的特征,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知集合P={x|
1
2
≤x≤3},函數(shù)f(x)=log2(ax2-2x+2)的定義域?yàn)镼,
若P∩Q=[
1
2
2
3
),P∪Q=(-2,3],求實(shí)數(shù)a的值.
(2)函數(shù)f(x)定義在R上且f(x)=-f(x+
3
2
),當(dāng)
1
2
≤x≤3時(shí),f(x)=log2(ax2-2x+2),若f(35)=1,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓錐的軸截面的母線與軸的夾角為
π
3
,母線長(zhǎng)為3,則過(guò)頂點(diǎn)的截面面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中,BC=3,AC=4,AB=5,點(diǎn)P是三條邊上的任意一點(diǎn),m=
PA
PB
,則m的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=sin
3
4
,b=cos
3
4
,c=1,則a,b,c的大小順序?yàn)椋ā 。?/div>
A、a<b<c
B、b<a<c
C、c<b<a
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x3-2x2+4x,當(dāng)x∈[-3,3]時(shí),有f(x)≥m2-14m恒成立,則實(shí)數(shù)m的取值范圍是( 。
A、(-3,11)
B、(3,11)
C、[3,11]
D、[2,7]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:a,b,x均是正數(shù),且a>b,求證:1<
a+x
b+x
a
b
;
(2)當(dāng)a,b,x均是正數(shù),且a>b,求證
b
a
b+x
a+x
<1;
(3)證明:△ABC中,
sinA
sinB+sinC
+
sinB
sinC+sinA
+
sinC
sinA+sinB
<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+
2
x
(x≠0),當(dāng)a>1時(shí),方程f(x)=f(a)的實(shí)根個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線y=x+m與圓x2+y2=16交于不同的兩點(diǎn)M,N,且|
MN
|≥
3
|
OM
+
ON
|,其中O是坐標(biāo)原點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案