16.已知:
$1+2+3+…+n=\frac{n(n+1)}{2}$;
$1×2+2×3+…+n(n+1)=\frac{n(n+1)(n+2)}{3}$;
$1×2×3+2×3×4+…+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$,
利用上述結果,計算:13+23+33+…+n3=$\frac{{{n^2}{{(n+1)}^2}}}{4}$.

分析 利用n4-(n-1)4=4(n-1)3+6(n-1)2+4(n-1)+1,再疊加,結合條件,可得結論.

解答 解:∵(n+1)4=n4+4n3+6n2+4n+1,
∴(n+1)4-n4=4n3+6n2+4n+1,
∴n4-(n-1)4=4(n-1)3+6(n-1)2+4(n-1)+1,

34-24=4×23+6×22+4×2+1
24-14=4×13+6×12+4×1+1
上述n個等式相加,得
(n+1)4-14=4(13+23+…+n3)+6(12+22+…+n2)+4(1+2+…+n)+n,
∴4(13+23+…+n3)=(n+1)4-1-6(12+22+…+n2)-4(1+2+…+n)-n
=(n+1)4-6×$\frac{1}{6}$n(n+1)(2n+1)-4×$\frac{n(n+1)}{2}$-(n+1)
=(n+1)[(n+1)3-n(2n+1)-2n-1]
=(n+1)(n3+n2
∴13+23+…+n3=$\frac{{{n^2}{{(n+1)}^2}}}{4}$,
故答案為$\frac{{{n^2}{{(n+1)}^2}}}{4}$.

點評 本題考查的知識點是歸納推理,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知P,Q是圓心在坐標原點O的單位圓上的兩點,且分別位于第一象限和第四象限,點P的橫坐標為$\frac{4}{5}$,點Q的橫坐標為$\frac{5}{13}$,則cos∠POQ=-$\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F1(-$\sqrt{6}$,0),e=$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)如圖,設R(x0,y0)是橢圓C上一動點,由原點O向圓(x-x02+(y-y02=4引兩條切線,分別交橢圓于點P,Q,若直線OP,OQ的斜率存在,并記為k1,k2,求證:k1•k2為定值;
(Ⅲ)在(Ⅱ)的條件下,試問OP2+OQ2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在三棱柱ABC-A1B1C1中,側面AA1C1C⊥底面ABC,AA1=A1C=AC=AB=BC=2,且點O為AC中點.
(Ⅰ)證明:A1O⊥平面ABC;
(Ⅱ)求三棱錐C1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在正三棱柱ABC-A1B1C1中,已知AB=1,AA1=2,D為BB1的中點,則AD與平面AA1C1C所成角的余弦值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{6}}}{4}$D.$\frac{{\sqrt{10}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓C:$\frac{x^2}{a^2}+{y^2}=1(a>1)$,F(xiàn)1,F(xiàn)2分別為左右焦點,在橢圓C上滿足條件$\overrightarrow{A{F_1}}.\overrightarrow{A{F_2}}=0$的點A有且只有兩個
(1)求橢圓C的方程
(2)若過點F2的兩條相互垂直的直線l1與l2,直線l1與曲線y2=4x交于兩點M、N,直線l2與橢圓C交于兩點
P、Q,求四邊形PMQN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知F1,F(xiàn)2分別為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0,a≠b)$的左右焦點,P為雙曲線右支上異于頂點的任一點,O為坐標原點,則下列說法正確的是(  )
A.△PF1F2的內(nèi)切圓圓心在直線$x=\frac{a}{2}$上B.△PF1F2的內(nèi)切圓圓心在直線x=b上
C.△PF1F2的內(nèi)切圓圓心在直線OP上D.△PF1F2的內(nèi)切圓經(jīng)過點(a,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.點A(sin2017°,cos2017°)在直角坐標平面上位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=-$\sqrt{3}sinxsin(x+\frac{π}{2})+{cos^2}x-\frac{1}{2}$(x∈R).
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)函數(shù)f(x)的圖象上所有點的橫坐標擴大到原來的2倍,再向右平移$\frac{π}{6}$個單位長度,得g(x)的圖象,求函數(shù)y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

同步練習冊答案