11.在正三棱柱ABC-A1B1C1中,已知AB=1,AA1=2,D為BB1的中點,則AD與平面AA1C1C所成角的余弦值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{6}}}{4}$D.$\frac{{\sqrt{10}}}{4}$

分析 以A為原點,在平面ABC內(nèi)過A作AC的垂線為x軸,AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出AD與平面AA1C1C所成角的余弦值.

解答 解:以A為原點,在平面ABC內(nèi)過A作AC的垂線為x軸,AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系,
∵正三棱柱ABC-A1B1C1中,AB=1,AA1=2,D為BB1的中點,
∴A(0,0,0),D($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,1),$\overrightarrow{AD}$=($\frac{\sqrt{3}}{2},\frac{1}{2},1$),
平面AA1C1C的法向量$\overrightarrow{n}$=(1,0,0),
AD與平面AA1C1C所成角為θ,
則sinθ=$\frac{|\overrightarrow{AD}•\overrightarrow{n}|}{|\overrightarrow{AD}|•|\overrightarrow{n}|}$=$\frac{\frac{\sqrt{3}}{2}}{\sqrt{2}}$=$\frac{\sqrt{6}}{4}$,
∴cosθ=$\sqrt{1-(\frac{\sqrt{6}}{4})^{2}}$=$\frac{\sqrt{10}}{4}$.
∴AD與平面AA1C1C所成角的余弦值為$\frac{\sqrt{10}}{4}$.
故選:D.

點評 本題考查線面角的余弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若變量x,y滿足的約束條件是$\left\{\begin{array}{l}y≤x\\ x+y≤4\\ y≥k\end{array}\right.$,且z=2x+y的最小值為-6,則k=( 。
A.0B.-2C.2D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,面積為S,且滿足4S=a2-(b-c)2,b+c=8,則S的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知變量x,y滿足約束任務(wù)$\left\{\begin{array}{l}{x+y-5≤0}\\{x-2y+1≤0}\\{x-1≥0}\end{array}\right.$,則z=x+2y的最小值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右兩個焦點F1,F(xiàn)2,離心率$e=\frac{{\sqrt{2}}}{2}$,短軸長為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,點A為橢圓上一動點(非長軸端點),AF2的延長線與橢圓交于B點,AO的延長線與橢圓交于C點,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知:
$1+2+3+…+n=\frac{n(n+1)}{2}$;
$1×2+2×3+…+n(n+1)=\frac{n(n+1)(n+2)}{3}$;
$1×2×3+2×3×4+…+n(n+1)(n+2)=\frac{n(n+1)(n+2)(n+3)}{4}$,
利用上述結(jié)果,計算:13+23+33+…+n3=$\frac{{{n^2}{{(n+1)}^2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.?dāng)?shù)列{an}的前n項和${S_n}=A{n^2}+Bn+q(A≠0)$,則q=0是{an}為等差數(shù)列的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若在($\sqrt{x}$+$\frac{2}{\sqrt{x}}$)n的展開式中,第3項為常數(shù)項,且含x項的系數(shù)為a,則直線y=$\frac{a}{4}$x與曲線y=x2所圍成的封閉區(qū)域的面積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.直線2x-4y+7=0的斜率是(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案