【題目】給出下列命題:
存在每個(gè)面都是直角三角形的四面體;
若三棱錐的三條側(cè)棱兩兩垂直,則其三個(gè)側(cè)面也兩兩垂直;
棱臺(tái)的側(cè)棱延長(zhǎng)后交于一點(diǎn);
用一個(gè)平面去截棱錐,棱錐底面和截面之間的部分是棱臺(tái);
其中正確命題的個(gè)數(shù)是
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
由正方體中四面體,可判斷;由線面垂直推導(dǎo)面面垂直可判斷;運(yùn)用棱臺(tái)的定義可判斷.
對(duì)于,存在每個(gè)面都是直角三角形的四面體,如四面體,故正確;
對(duì)于,若三棱錐的三條側(cè)棱兩兩垂直,則其三個(gè)側(cè)面也兩兩垂直,
比如正方體中共頂點(diǎn)的三個(gè)相鄰平面,故正確;
對(duì)于,由棱臺(tái)的定義可得棱臺(tái)的側(cè)棱延長(zhǎng)后交于一點(diǎn),故正確;
對(duì)于,用一個(gè)平行于底面的平面去截棱錐,棱錐底面和截面之間的部分是棱臺(tái),故錯(cuò)誤.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到一個(gè)奇函數(shù),只需將函數(shù)f(x)=sin2x﹣ cos2x的圖象( )
A.向右平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向左平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),且A>0,ω>0,0<φ<π)的部分圖象如圖所示.
(1)求A,ω,φ的值;
(2)設(shè)θ為銳角,且f(θ)=﹣ ,求f(θ﹣ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐D﹣ABC及其正視圖和側(cè)視圖如右圖所示,且頂點(diǎn)A,B,C,D均在球O的表面上,則球O的表面積為( )
A.32π
B.36π
C.128π
D.144π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB=BC=2,∠ABC=120°,AD=CD= ,直線PC與平面ABCD所成角的正切為 .
(1)設(shè)E為直線PC上任意一點(diǎn),求證:AE⊥BD;
(2)求二面角B﹣PC﹣A的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面為正三角形,側(cè)棱垂直底面,AB=4,AA1=6,若E,F(xiàn)分別是棱BB1 , CC1上的點(diǎn),且BE=B1E,C1F= CC1 , 則異面直線A1E與AF所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P在雙曲線 ﹣ =1(a>0,b>0)的右支上,其左、右焦點(diǎn)分別為F1 , F2 , 直線PF1與以坐標(biāo)原點(diǎn)O為圓心、a為半徑的圓相切于點(diǎn)A,線段PF1的垂直平分線恰好過點(diǎn)F2 , 則該雙曲線的漸近線的斜率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,向量 =( ,1), =(cosA+1,sinA),且 的值為2+ .
(1)求∠A的大;
(2)若a= ,cosB= ,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com