精英家教網 > 高中數學 > 題目詳情

【題目】△ABC中,角A,B,C所對的邊分別為a,b,c,向量 =( ,1), =(cosA+1,sinA),且 的值為2+
(1)求∠A的大;
(2)若a= ,cosB= ,求△ABC的面積.

【答案】
(1)解:∵ =2+


(2)解:∵ ,

,

∴由 ,得 ,


【解析】(1)由已知及平面向量數量積的運算可求sin(A+ )=1,結合A的范圍即可得解A的值.(2)利用同角三角函數基本關系式可求sinB,進而利用正弦定理可求b的值,根據三角形面積公式即可計算得解.
【考點精析】解答此題的關鍵在于理解正弦定理的定義的相關知識,掌握正弦定理:,以及對余弦定理的定義的理解,了解余弦定理:;;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和為Sn , 且滿足Sn=2﹣an , n=1,2,3,….
(1)求數列{an}的通項公式;
(2)若數列{bn}滿足b1=1,且bn+1=bn+an , 求數列{bn}的通項公式;
(3)設cn= ,數列{cn}的前n項和為Tn= .求n.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列命題:

存在每個面都是直角三角形的四面體;

若三棱錐的三條側棱兩兩垂直,則其三個側面也兩兩垂直;

棱臺的側棱延長后交于一點;

用一個平面去截棱錐,棱錐底面和截面之間的部分是棱臺;

其中正確命題的個數是  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

(1)E的方程;

(2)設過點A的動直線lE相交于P,Q兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有一個同學家開了一個奶茶店,他為了研究氣溫對熱奶茶銷售杯數的影響,從一季度中隨機選取5天,統(tǒng)計出氣溫與熱奶茶銷售杯數,如表:

氣溫

0

4

12

19

27

熱奶茶銷售杯數

150

132

130

104

94

(Ⅰ)求熱奶茶銷售杯數關于氣溫的線性回歸方程精確到0.1),若某天的氣溫為,預測這天熱奶茶的銷售杯數;

(Ⅱ)從表中的5天中任取兩天,求所選取兩天中至少有一天熱奶茶銷售杯數大于130的概率.

參考數據:,.

參考公式:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在幾何體A1B1D1﹣ABCD中,四邊形A1B1BA與A1D1DA均為直角梯形,且AA1⊥底面ABCD,四邊形ABCD為正方形,AB=2A1D1=2A1B1=4,AA1=4,P為DD1的中點.
(Ⅰ)求證:AB1⊥PC;
(Ⅱ)求幾何體A1B1D1﹣ABCD的表面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x+xlnx,若k∈Z,且k(x﹣1)<f(x)對任意的x>1恒成立,則k的最大值為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數,為偶函數,函數的圖象與直線相切.

(1)求的解析式;

(2)已知函數,求的單調遞減區(qū)間和極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某樂隊參加一戶外音樂節(jié),準備從3首原創(chuàng)新曲和5首經典歌曲中隨機選擇4首進行演唱.
(1)求該樂隊至少演唱1首原創(chuàng)新曲的概率;
(2)假定演唱一首原創(chuàng)新曲觀眾與樂隊的互動指數為a(a為常數),演唱一首經典歌曲觀眾與樂隊的互動指數為2a,求觀眾與樂隊的互動指數之和X的概率分布及數學期望.

查看答案和解析>>

同步練習冊答案