14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),若不等式λSn>an恒成立,則實(shí)數(shù)λ的取值范圍是λ>1.

分析 由題知,當(dāng)n≥2 時(shí),有Sn+1=an+2-an+1,Sn-1+1=an+1-an,兩式相減得an+2=2an+1,利用等比數(shù)列的通項(xiàng)公式與求和公式可得an,Sn,再利用數(shù)列的單調(diào)性即可得出.

解答 解:由題知,當(dāng)n≥2 時(shí),有Sn+1=an+2-an+1,Sn-1+1=an+1-an,
兩式相減得an+2=2an+1,
又a1=1,a2=2,$\therefore$ a3=4,故an+1=2an 對(duì)任意n∈N* 成立,
∴${a_n}={2^{n-1}}$,${S_n}={2^n}-1$,
∴$λ>\frac{a_n}{S_n}=\frac{1}{{2-\frac{1}{{{2^{n-1}}}}}}$恒成立只需$λ>\frac{1}{{2-\frac{1}{{{2^{n-1}}}}}}$的最大值,
當(dāng)n=1時(shí),右式取得最大值1,∴λ>1.
故答案為:λ>1.

點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的定義通項(xiàng)公式與求和公式、數(shù)列的單調(diào)性、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知條件p:x<1,條件q:x2-x<0,則p是q成立的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知扇形的圓心角為$\frac{π}{5}$,半徑等于20,則扇形的弧長(zhǎng)為( 。
A.B.$\frac{200}{π}$C.D.$\frac{100}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.利用直角三角形中的邊角關(guān)系證明:在任意△ABC中$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)y=sinx-$\frac{1}{x}$的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=lnx-ax+b(a,b∈R)有兩個(gè)不同的零點(diǎn)x1,x2
(Ⅰ)求f(x)的最值;
(Ⅱ)證明:x1•x2<$\frac{1}{{a}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每種產(chǎn)品都分為正品與次品.其中生產(chǎn)甲產(chǎn)品為正品的概率是$\frac{4}{5}$,生產(chǎn)乙產(chǎn)品為正品的概率是$\frac{3}{4}$;生產(chǎn)甲乙兩種產(chǎn)品相互獨(dú)立,互不影響.生產(chǎn)一件甲產(chǎn)品,若是正品可盈利40元,若是次品則虧損5元;生產(chǎn)一件乙產(chǎn)品,若是正品可盈利50元,若是次品則虧損10元.計(jì)算以下問(wèn)題:
(Ⅰ)記X為生產(chǎn)1件甲產(chǎn)品和1件乙產(chǎn)品所得的總利潤(rùn),求隨機(jī)變量X的分布列和數(shù)學(xué)期望;
(Ⅱ)求生產(chǎn)4件產(chǎn)品甲所獲得的利潤(rùn)不少于110元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知m,n是不重合的直線,α,β是不重合的平面,有下列命題
①若α∩β=n,m∥n,則m∥α,m∥β;     
②若m⊥α,m⊥β,則α∥β;
③若m∥α,m⊥n,則n⊥α;             
④若m⊥α,n?α,則m⊥n;
其中所有真命題的序號(hào)是( 。
A.②④B.②③C.①④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知圓C:x2+y2=4,直線l:ax+y+2a=0,當(dāng)直線l與圓C相交于A,B兩點(diǎn),且|AB|=2$\sqrt{2}$時(shí),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案