分析 (I)利用絕對(duì)值三角不等式得出|x-$\frac{a}{2}$|+|x-1|的最小值,從而解出a的范圍;
(II)做出f(x)的函數(shù)圖象,根據(jù)函數(shù)圖象得出m的范圍.
解答 解:(I)∵f(x)≥2-|x-1|恒成立,即|x-$\frac{a}{2}$|+|x-1|≥1恒成立,
又|x-$\frac{a}{2}$|+|x-1|≥|x-$\frac{a}{2}$-(x-1)|=|1-$\frac{a}{2}$|,
∴|1-$\frac{a}{2}$|≥1,解得a≤0或a≥4.
∴a的取值范圍是(-∞,0]∪[4,+∞).
(II)當(dāng)a=1時(shí),f(x)=|2x-1|+|x-1|=$\left\{\begin{array}{l}{2-3x,x≤\frac{1}{2}}\\{x,\frac{1}{2}<x<1}\\{3x-2,x≥1}\end{array}\right.$,
做出f(x)的函數(shù)圖象如圖所示:
由圖象可知當(dāng)$\frac{1}{2}$<m≤1時(shí),直線y=m與f(x)的圖象構(gòu)成三角形.
∴m的最大值為1,
令2-3x=1得x=$\frac{1}{3}$,此時(shí)圍成三角形的面積為$\frac{1}{2}×$(1-$\frac{1}{3}$)×(1-$\frac{1}{2}$)=$\frac{1}{6}$.
點(diǎn)評(píng) 本題考查了絕對(duì)值不等式的解法,分段函數(shù)的函數(shù)圖象,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{AB}∥\overrightarrow{BC}$ | B. | $\overrightarrow{AB}∥\overrightarrow{AD}$ | C. | $\overrightarrow{BC}∥\overrightarrow{AC}$ | D. | $\overrightarrow{AC}∥\overrightarrow{AD}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 18 | C. | 24 | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (42,56] | B. | (20,30] | C. | (30,42] | D. | (20,42) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
無(wú)促銷活動(dòng) | 采用促銷方案1 | 采用促銷方案2 | ||
本年度平均銷售額不高于上一年度平均銷售額 | 48 | 11 | 31 | 90 |
本年度平均銷售額高于上一年度平均銷售額 | 52 | 69 | 29 | 150 |
100 | 80 | 60 |
售價(jià)x | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷量y | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
$\hat y=-1200lnx+5000$ | $\hat y=-27x+1700$ | $\hat y=-\frac{1}{3}{x^2}+1200$ | |
$\sum_{i=1}^8{({y_i}}-{\hat y_i}{)^2}$ | 49428.74 | 11512.43 | 175.26 |
$\sum_{i=1}^8{({y_i}}-\overline y{)^2}$ | 124650 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com