在△ABC中,已知a2+b2=c2-
2
ab,則∠C=( 。
A、30°B、45°
C、150°D、135°
考點(diǎn):余弦定理
專題:解三角形
分析:利用余弦定理表示出cosC,把已知等式變形后代入求出cosC的值,即可確定出C的度數(shù).
解答: 解:∵在△ABC中,a2+b2=c2-
2
ab,即a2+b2-c2=-
2
ab,
∴cosC=
a2+b2-c2
2ab
=-
2
2
,
則∠C=135°.
故選:D.
點(diǎn)評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1
x

(1)判斷函數(shù)f(x)的奇偶性,并畫出函數(shù)f(x)的簡圖;
(2)求出函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)g(x)=x+
1
x+1
(x≥2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}為等差數(shù)列,其前n項(xiàng)和為Sn,已知a1+a4+a7=33,a2+a5+a8=27,若Sn有最大值,則n的值為(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
log2x,x≥0
x(x-2),x<0
,則f[f(-2)]=( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列結(jié)論:
4(-2)4
=±2;
②y=x2+1,x∈[-1,2],y的值域是[2,5];
③冪函數(shù)圖象一定不過第四象限;
④函數(shù)f(x)=ax+1-2(a>0,a≠1)的圖象過定點(diǎn)(-1,-1);
⑤若lna<1成立,則a的取值范圍是(-∞,e).
其中正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系Oxyz中,與點(diǎn)(1,2,-3)關(guān)于y軸對稱的點(diǎn)為A,則點(diǎn)A與點(diǎn)(-1,-2,-1)的距離為( 。
A、2
B、2
2
C、4
2
D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=lg
2+x
2-x
,則f(
x
2
)+f(
2
x
)的定義域?yàn)椋ā 。?/div>
A、(-2,-1)∪(1,2)
B、(-4,-2)∪(2,4)
C、(-4,0)∪(0,4)
D、(-4,-1)∪(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(α)=
tan(2π-α)sin(π+α)cos(6π-α)
sin(
3
2
π+α)cos(
1
2
π+α)

(1)化簡f(α);
(2)若sinα=-
2
2
3
,α∈[-π,-
π
2
],求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=alnx+x2+bx(a,b∈R,a≠0,且x=1為f(x)的極值點(diǎn).
(1)當(dāng)a=1時,求f(x)的單調(diào)遞減區(qū)間;
(2)若f(x)=0恰有兩解,試求實(shí)數(shù)a的取值范圍;
(3)在(1)的條件下,設(shè)g(x)=f(x+1)-x2+x+2,證明:
n
k=1
1
g(k)
3n2+5n
(n+1)(n+2)
(n∈N*).

查看答案和解析>>

同步練習(xí)冊答案