A. | [$\frac{π}{24}$+$\frac{1}{2}$kπ,$\frac{π}{8}$+$\frac{1}{2}$kπ),k∈Z | B. | (-$\frac{π}{8}$+$\frac{1}{2}$kπ,$\frac{π}{24}$+$\frac{1}{2}$kπ),k∈Z | ||
C. | [$\frac{π}{24}$+kπ,$\frac{π}{8}$+kπ),k∈Z | D. | [$\frac{π}{24}$+kπ,$\frac{π}{8}$+kπ],k∈Z |
分析 根據(jù)正切函數(shù)的圖象與性質,結合題意,即可求出不等式的解集.
解答 解:∵f(x)=tan(2x+$\frac{π}{4}$),
∴f(x)≥$\sqrt{3}$化為tan(2x+$\frac{π}{4}$)≥$\sqrt{3}$,
即$\frac{π}{3}$+kπ≤2x+$\frac{π}{4}$<$\frac{π}{2}$+kπ,k∈Z;
解得$\frac{π}{24}$+$\frac{1}{2}$kπ≤x<$\frac{π}{8}$+$\frac{1}{2}$kπ,k∈Z;
故使f(x)≥$\sqrt{3}$成立的x的集合是[$\frac{π}{24}$+$\frac{1}{2}$kπ,$\frac{π}{8}$+$\frac{1}{2}$kπ),k∈Z,
故選:A.
點評 本題考查了正切函數(shù)的圖象與性質的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | -$\sqrt{2}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|1<x<3} | B. | {x|1≤x<3} | C. | {x|1<x≤3} | D. | {x|1≤x≤3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com