7.給出命題p:方程$\frac{x^2}{a}+\frac{y^2}{2-a}=1$表示焦點(diǎn)在y軸上的橢圓;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點(diǎn).
(1)如果命題p為真,求a的取值范圍;
(2)如果命題“p∪q”為真,“p∩q”為假,求實(shí)數(shù)a的取值范圍.

分析 (1)若命題p為真,則2-a>a>0,解得:a的取值范圍;
(2)如果命題“p∪q”為真,“p∩q”為假,則p,q中一真一假,進(jìn)而可得實(shí)數(shù)a的取值范圍.

解答 解:(1)命題p為真?2-a>a>0?0<a<1…(4分)
(2)命題q為真$?△={(2a-3)^2}-4>0?a<\frac{1}{2}或a>\frac{5}{2}$
命題“p∨q”為真,“p∧q”為假?p,q中一真一假,…(6分)
當(dāng)p真q假時(shí),$\left\{{\begin{array}{l}{0<a<1}\\{\frac{1}{2}≤a≤\frac{5}{2}}\end{array}}\right.$,得$\frac{1}{2}≤a<1$…(8分)
當(dāng)p假q真時(shí),$\left\{{\begin{array}{l}{a≤0或a≥1}\\{a<\frac{1}{2}或a>\frac{5}{2}}\end{array}}\right.$,得$a≤0或a>\frac{5}{2}$
所以a的取值范圍是$\frac{1}{2}≤a<1$或$a≤0或a>\frac{5}{2}$…(10分)

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了橢圓的標(biāo)準(zhǔn)方程,二次函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.f(x)=Asin(ωx+ωπ)(A>0,ω>0)在$[{-\frac{3π}{2},-\frac{3π}{4}}]$上單調(diào),則ω的最大值為( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在四棱錐S-ABCD中,點(diǎn)O是正方形ABCD的中心,SO⊥平面ABCD,且SO=OD,點(diǎn)P為棱SD上一點(diǎn).
(Ⅰ) 當(dāng)點(diǎn)P為棱SD的中點(diǎn)時(shí),求證:SD⊥平面PAC;
(Ⅱ)是否存在點(diǎn)P,使得直線BC與平面PAC所成角的正弦值為$\frac{\sqrt{10}}{10}$?若存在,請(qǐng)確定點(diǎn)P的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)命題p:點(diǎn)(1,1)在圓x2+y2-2mx+2my+2m2-4=0的內(nèi)部;命題q:直線mx-y+1+2m=0(k∈R)不經(jīng)過第四象限,如果p∨q為真命題,p∧q為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知sina=-$\frac{\sqrt{3}}{2}$,a∈[-2π,0],則a=$-\frac{π}{3}$和$-\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)=tan(2x+$\frac{π}{4}$),則使f(x)≥$\sqrt{3}$成立的x的集合是( 。
A.[$\frac{π}{24}$+$\frac{1}{2}$kπ,$\frac{π}{8}$+$\frac{1}{2}$kπ),k∈ZB.(-$\frac{π}{8}$+$\frac{1}{2}$kπ,$\frac{π}{24}$+$\frac{1}{2}$kπ),k∈Z
C.[$\frac{π}{24}$+kπ,$\frac{π}{8}$+kπ),k∈ZD.[$\frac{π}{24}$+kπ,$\frac{π}{8}$+kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示是y=Asin(ωx+φ)(A>0,ω>0)的圖象的一段,它的一個(gè)解析式為( 。 
A.y=$\frac{2}{3}$sin(2x+$\frac{π}{3}$)B.y=$\frac{2}{3}$sin($\frac{x}{2}$+$\frac{π}{4}$)C.y=$\frac{2}{3}$sin(x-$\frac{π}{3}$)D.y=$\frac{2}{3}$sin(2x+$\frac{2}{3}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.給出以下命題:
①若方程x2+2x+m=0有實(shí)根,則m≤2;
②若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線斜率為2,則其離心率為$\sqrt{5}$;
③在銳角△ABC中,一定sinA>cosB成立;
④秦九韶算法的特點(diǎn)在于把求一個(gè)n次多項(xiàng)式的值轉(zhuǎn)化為求n個(gè)一次多項(xiàng)式的值;
⑤隨機(jī)模擬方法的奠基人是蒙特卡羅.
其中正確的命題序號(hào)為①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.為了得到函數(shù)y=sin2x+cos2x的圖象,可以將函數(shù)y=cos2x-sin2x的圖象(  )
A.向右平移$\frac{π}{4}$個(gè)單位B.向左平移$\frac{π}{4}$個(gè)單位
C.向右平移$\frac{π}{2}$個(gè)單位D.向左平移$\frac{π}{2}$個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案