分析 由函數(shù)y=f(x)(x∈R)的圖象可得函數(shù)的單調(diào)性,根據(jù)單調(diào)性與導數(shù)的關(guān)系得導數(shù)的符號,進而得不等式xf′(x)≤0的解集.
解答 解:由f(x)圖象特征可得,
f′(x)在(-∞,$\frac{1}{2}$]∪[2,+∞)上大于0,在($\frac{1}{2}$,2)上小于0,
∴xf′(x)≥0?$\left\{\begin{array}{l}{x≥0}\\{f′(x)≥0}\end{array}\right.$或$\left\{\begin{array}{l}{x≤0}\\{f′(x)≤0}\end{array}\right.$?0≤x≤$\frac{1}{2}$或x≥2,
∴xf′(x)≥0的解集為[0,$\frac{1}{2}$]∪[2,+∞).
故答案為:$[0,\frac{1}{2}]∪[2,+∞)$
點評 本題考查導數(shù)與函數(shù)單調(diào)性的關(guān)系,考查學生的識圖能力,利用導數(shù)求函數(shù)的單調(diào)性是重點.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,6] | B. | [3,6] | C. | (3$\sqrt{2}$,6] | D. | [6,9) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x1+x2>0 | B. | x1+x2<0 | C. | x1+x2=0 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等邊三角形 | B. | 等腰三角形 | ||
C. | 等腰三角形或直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 45o | B. | 60o | C. | 90o | D. | 120o |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | m≥$\frac{5}{2}$ | B. | m>$\frac{5}{2}$ | C. | m≤$\frac{5}{2}$ | D. | m<$\frac{5}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com