11.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且a1+a3=$\frac{5}{2}$,a2+a4=$\frac{5}{4}$,則S6=$\frac{63}{16}$.

分析 利用等比數(shù)列的通項(xiàng)公式與求和公式即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,∵a1+a3=$\frac{5}{2}$,a2+a4=$\frac{5}{4}$,
∴a2+a4=$\frac{5}{4}$=q(a1+a3)=$\frac{5}{2}$q,解得q=$\frac{1}{2}$.
∴${a}_{1}(1+\frac{1}{4})$=$\frac{5}{2}$,解得a1=2.
則S6=$\frac{2[1-(\frac{1}{2})^{6}]}{1-\frac{1}{2}}$=$\frac{63}{16}$
故答案為:$\frac{63}{16}$.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f(x)=lnx,g(x)=$\frac{1}{2}$x|x|.
(1)求g(x)在x=-1處的切線方程;
(2)令F(x)=x•f(x)-g(x),求F(x)的單調(diào)區(qū)間;
(3)若任意x1,x2∈[1,+∞)且x1>x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)y=2|x|-4的圖象與曲線C:x2+λy2=4恰有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)λ的取值范圍是(  )
A.[-$\frac{1}{4}$,$\frac{1}{4}$)B.[-$\frac{1}{4}$,$\frac{1}{4}$]C.(-∞,-$\frac{1}{4}$]∪(0,$\frac{1}{4}$)D.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖1,已知矩形ABCD中,$AB=2,BC=2\sqrt{3}$,點(diǎn)E是邊BC上的點(diǎn),且$CE=\frac{1}{3}CB$,DE與AC相交于點(diǎn)H.現(xiàn)將△ACD沿AC折起,如圖2,點(diǎn)D的位置記為D',此時(shí)$D'E=\frac{{\sqrt{30}}}{3}$.
(Ⅰ)求證:D'H⊥平面ABC;
(Ⅱ)求二面角H-D'E-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線E的焦點(diǎn)為F,準(zhǔn)線為l,過F的直線m與E交于A,B兩點(diǎn),C,D分別為A,B在l上的射影,M為AB的中點(diǎn),若m與l不平行,則△CMD是(  )
A.等腰三角形且為銳角三角形B.等腰三角形且為鈍角三角形
C.等腰直角三角形D.非等腰的直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)$f(x)=(1-k)x+\frac{1}{e^x}$.
(Ⅰ)如果f(x)在x=0處取得極值,求k的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)k=0時(shí),過點(diǎn)A(0,t)存在函數(shù)曲線f(x)的切線,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在數(shù)列{an}中,a2=$\frac{2}{3}$.
(1)若數(shù)列{an}滿足2an-an+1=0,求an
(2)若a4=$\frac{4}{7}$,且數(shù)列{(2n-1)an+1}是等差數(shù)列,求數(shù)列{$\frac{n}{{a}_{n}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2lnx+x2-ax+2(a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若存在x0∈(0,1],使得對任意的a∈[-2,0),不等式f(x0)>a2+3a+2-2mea(a+1)(其中e是自然對數(shù)的底數(shù))都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)f(x)=xex(e為自然對數(shù)的底數(shù)),g(x)=(x+1)2
(I)記$F(x)=\frac{f(x)}{g(x)}$,討論函F(x)單調(diào)性;
(II)令G(x)=af(x)+g(x)(a∈R),若函數(shù)G(x)有兩個(gè)零點(diǎn).
(i)求參數(shù)a的取值范圍;
(ii)設(shè)x1,x2是G(x)的兩個(gè)零點(diǎn),證明x1+x2+2<0.

查看答案和解析>>

同步練習(xí)冊答案