16.已知函數(shù)$f(x)=\left\{\begin{array}{l}8,x<0\\ x+a,x≥0\end{array}\right.$,若f(3)=10,則a=7.

分析 由函數(shù)性質(zhì)得f(3)=3+a=10,由此能求出a的值.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}8,x<0\\ x+a,x≥0\end{array}\right.$,f(3)=10,
∴f(3)=3+a=10,
解得a=7.
故答案為:7.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某校學(xué)生在進行“南水北調(diào)工程對北京市民的影響”的項目式學(xué)習(xí)活動中,對某居民小區(qū)進行用水情況隨機抽樣調(diào)查,獲得了該小區(qū)400位居民某月的用水量數(shù)據(jù)(單位:立方米),整理得到如下數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖(圖1):
組號分組頻數(shù)
1[0.5,1)20
2[1,1.5)40
3[1.5,2)80
4[2,2.5)120
5[2.5,3)60
6[3,3.5)40
7[3.5,4)20
8[4,4.5)20
(Ⅰ)求a,b的值;
(Ⅱ)從該小區(qū)隨機選取一名住戶,試估計這名住戶一個月用水量小于3立方米的概率;
(Ⅲ)若小區(qū)人均月用水量低于某一標準,則稱該小區(qū)為“節(jié)水小區(qū)”.假設(shè)同組中的每個數(shù)據(jù)用該組區(qū)間的右端點值代替,經(jīng)過估算,該小區(qū)未達到“節(jié)水小區(qū)”標準,而且該小區(qū)居民月用水量不高于這一標準的比例為65%,經(jīng)過同學(xué)們的節(jié)水宣傳,三個月后,又進行一次同等規(guī)模的隨機抽樣調(diào)查,數(shù)據(jù)如圖2所示,估計這時小區(qū)是否達到“節(jié)水小區(qū)”的標準?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若等比數(shù)列{an}的前項和為Sn,且S2=3,S6=63,則S5=(  )
A.-33B.15C.31D.-33或31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線l:ax+$\frac{1}{a}$y-1=0 與x,y軸的交點分別為A,B,直線與圓O:x2+y2=1 的交點為C,D,給出下面三個結(jié)論:
①?a≥1,S△AOB=$\frac{1}{2}$;
②?a≥1,|AB|≥|CD|; 
③?a≥1,S△COD<$\frac{1}{2}$.
其中,所有正確結(jié)論的個數(shù)是( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)=$\frac{1}{2}$x+sinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$],則導(dǎo)函數(shù)f′(x)是(  )
A.僅有極小值的奇函數(shù)B.僅有極小值的偶函數(shù)
C.僅有極大值的偶函數(shù)D.既有極小值也有極大值的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}中,a1=3,a2=6,an+2=an+1-an,則a2016=(  )
A.6B.-6C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.O-xyz坐標系內(nèi)xoy平面內(nèi)0≤y≤2-x2繞y軸旋轉(zhuǎn)一周構(gòu)成一個不透光立體,在(1,0,1)設(shè)置一光源,在xoy平面內(nèi)有一以原點為圓心C被光照到的長度為2π,則曲線C上未被照到的長度為2π(r-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在如圖所示的算法框圖中,如果輸入的n=5,那么輸出的i等于5.

查看答案和解析>>

同步練習(xí)冊答案