4.復(fù)數(shù) z=$\frac{3-i}{1-2i}$的共軛復(fù)數(shù)是1-i.

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:z=$\frac{3-i}{1-2i}$=$\frac{(3-i)(1+2i)}{(1-2i)(1+2i)}$=$\frac{5+5i}{5}$=1+i的共軛復(fù)數(shù)為1-i.
故答案為:1-i.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρsin2θ+4sinθ-ρ=0,直線l:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=3+tsinα}\end{array}\right.$(t為參數(shù))過曲線C的焦點(diǎn),且與曲線C交于M,N兩點(diǎn).
(1)寫出曲線C及直線l直角坐標(biāo)方程;
(2)求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知三角形ABC中,AB=AC,AC邊上的中線長為3,當(dāng)三角形ABC的面積最大時(shí),AB的長為( 。
A.$2\sqrt{5}$B.3$\sqrt{6}$C.2$\sqrt{6}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.命題:“?x0∈R,x02+x0-1>0”的否定為( 。
A.?x∈R,x2+x-1<0B.?x∈R,x2+x-1≤0
C.?x0∉R,x02+x0-1=0D.?x0∈R,x02+x0-1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=sin(4x-2),則f′(x)=4cos(4x-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),則,f(2016)的值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若a,b為非零實(shí)數(shù),則(1)$\frac{a+b}{2}≥\sqrt{ab}$;(2)${({\frac{a+b}{2}})^2}≤\frac{{{a^2}+{b^2}}}{2}$;(3)$\frac{a+b}{2}≥\frac{ab}{a+b}$;(4)$\frac{a}+\frac{a}≥2$.其中恒成立的個(gè)數(shù)是(  )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.記函數(shù)f(x)=$\frac{1}{{\sqrt{x-2}}}$的定義域?yàn)榧螦,則函數(shù)g(x)=$\sqrt{9-{x^2}}$的定義域?yàn)榧螧,
(1)求A∩B和A∪B
(2)若C={x|p-2<x<2p+1},且C⊆A,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0,則l被圓C截得的最短弦長為4$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案