【題目】某商家統(tǒng)計了去年兩種產(chǎn)品的月銷售額(單位:萬元),繪制了月銷售額的雷達圖,圖中點表示產(chǎn)品2月份銷售額約為20萬元,點表示產(chǎn)品9月份銷售額約為25萬元.

根據(jù)圖中信息,下面統(tǒng)計結論錯誤的是(

A.產(chǎn)品的銷售額極差較大B.產(chǎn)品銷售額的中位數(shù)較大

C.產(chǎn)品的銷售額平均值較大D.產(chǎn)品的銷售額波動較小

【答案】B

【解析】

由圖示中P產(chǎn)品的銷售額的波動較大,Q產(chǎn)品的銷售額的波動較小,再根據(jù)極差、中位數(shù)、平均值的概念,可得選項.

據(jù)圖求可以看出,P產(chǎn)品的銷售額的波動較大,Q產(chǎn)品的銷售額的波動較小,并且Q產(chǎn)品的銷售額只有兩個月的銷售額比25萬元稍小,其余都在25萬元至30萬元之間,所以P產(chǎn)品的銷售額的極差較大,中位數(shù)較小,Q產(chǎn)品的銷售的平均值較大,銷售的波動較小,

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內角A,B,C的對邊,且acos C+asin C-b-c=0.

(1)求A;

(2)若AD為BC邊上的中線,cos B=,AD=,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的離心率為,右準線方程為,分別是橢圓的左、右頂點,過右焦點且斜率為的直線與橢圓相交于,兩點.

1)求橢圓的標準方程.

2)記、的面積分別為、,若,求的值;

3)設線段的中點為,直線與右準線相交于點,記直線、的斜率分別為、、,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生態(tài)農(nóng)場有一矩形地塊,地塊內有一半圓形池塘(如圖所示),其中百米,百米,半圓形池塘的半徑為1百米,圓心與線段的中點重合,半圓與的左側交點為.該農(nóng)場計劃分別在上各選一點,修建道路,要求與半圓相切.

1)若,求該道路的總長;

2)若為觀光道路,修建費用是4萬元/百米,為便道,修建費用是1萬元/百米,求修建觀光道路與便道的總費用的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,是兩個平面,,是兩條直線,下列命題錯誤的是(

A.如果,那么.

B.如果,那么.

C.如果,,,那么.

D.如果內有兩條相交直線與平行,那么.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調性;

2)設,證明:曲線沒有經(jīng)過坐標原點的切線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,M是橢圓C的上頂點,,F(xiàn)2是橢圓C的焦點,的周長是6.

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)過動點P(1,t)作直線交橢圓CA,B兩點,且|PA|=|PB|,過P作直線l,使l與直線AB垂直,證明:直線l恒過定點,并求此定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本小題滿分12如圖,三棱柱ABC-A1B1C1,CA=CB,AB=A A1,BA A1=60°.

)證明ABA1C;

)若平面ABC平面AA1B1B,AB=CB,直線A1C 與平面BB1C1C所成角正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市一所高中為備戰(zhàn)即將舉行的全市羽毛球比賽,學校決定組織甲、乙兩隊進行羽毛球對抗賽實戰(zhàn)訓練.每隊四名運動員,并統(tǒng)計了以往多次比賽成績,按由高到低進行排序分別為第一名、第二名、第三名、第四名.比賽規(guī)則為甲、乙兩隊同名次的運動員進行對抗,每場對抗賽都互不影響,當甲、乙兩隊的四名隊員都進行一次對抗賽后稱為一個輪次.按以往多次比賽統(tǒng)計的結果,甲、乙兩隊同名次進行對抗時,甲隊隊員獲勝的概率分別為,,,.

(1)進行一個輪次對抗賽后一共有多少種對抗結果?

(2)計分規(guī)則為每次對抗賽獲勝一方所在的隊得1分,失敗一方所在的隊得0分,設進行一個輪次對抗賽后甲隊所得分數(shù)為X,求X的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案