【題目】高三年級有500名學(xué)生,為了了解數(shù)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機抽出若干名學(xué)生在一次測試中的數(shù)學(xué)成績,制成如下頻率分布表:
分組 | 頻數(shù) | 頻率 |
12 | ||
4 | ||
合計 |
根據(jù)上面圖表,求處的數(shù)值
在所給的坐標系中畫出的頻率分布直方圖;
根據(jù)題中信息估計總體平均數(shù),并估計總體落在中的概率.
【答案】(1)① 1 ② 0.025; ③ 0.1 ④ 1
(2)略
(3)0.315
【解析】
根據(jù)直方圖可以看出對應(yīng)的頻率是,當頻率是時,對應(yīng)的頻數(shù)是12,按照比例作出的結(jié)果,用1減去其他的頻率得到的結(jié)果,是合計,每一個表中這個位置都是1;根據(jù)上一問補充完整的頻率分布表,畫出頻率分步直方圖;估計總體落在中的概率,利用組中值算得平均數(shù),總體落在上的概率為,得到結(jié)果.
根據(jù)直方圖可以看出對應(yīng)的頻率是,
當頻率是時,對應(yīng)的頻數(shù)是12,按照比例作出的結(jié)果,
用1減去其他的頻率得到的結(jié)果,處是合計1,
;;;
根據(jù)頻率分布表得到頻率分布直方圖如圖.
利用組中值算得平均數(shù)為:
;
故總體落在上的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知函數(shù)f(x)=ex, g(x)=lnx.
(1)設(shè)f(x)在x1處的切線為l1, g(x)在x2處的切線為l2,若l1//l2,求x1+g(x2)的值;
(2)若方程af 2(x)-f(x)-x=0有兩個實根,求實數(shù)a的取值范圍;
(3)設(shè)h(x)=f(x)(g(x)-b),若h(x)在[ln2,ln3]內(nèi)單調(diào)遞減,求實數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1存在點D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知流程圖如下圖所示,該程序運行后,為使輸出的值為16,則循環(huán)體的判斷框內(nèi)①處應(yīng)填( )
A. 2 B. 3 C. 5 D. 7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為:(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于,兩點.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)若點的極坐標為,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對任意的正整數(shù),總存在正整數(shù),使得數(shù)列的前項和,則稱是“回歸數(shù)列”.
(1)①前項和為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;
②通項公式為的數(shù)列是否是“回歸數(shù)列”?并請說明理由;
(2)設(shè)是等差數(shù)列,首項,公差,若是“回歸數(shù)列”,求的值;
(3)是否對任意的等差數(shù)列,總存在兩個“回歸數(shù)列”和,使得成立,請給出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得25萬元~ 1600萬元的投資收益,現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,獎金不超過75萬元,同時獎金不超過投資收益的20%.(即:設(shè)獎勵方案函數(shù)模型為y=f (x)時,則公司對函數(shù)模型的基本要求是:當x∈[25,1600]時,①f(x)是增函數(shù);②f (x) 75恒成立; 恒成立.
(1)判斷函數(shù)是否符合公司獎勵方案函數(shù)模型的要求,并說明理由;
(2)已知函數(shù)符合公司獎勵方案函數(shù)模型要求,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標系xOy中,以O(shè)為極點,x軸的正半軸為極軸,建立極坐標系.曲線C1的極坐標方程為ρ=4cosθ,直線l: ( 為參數(shù)).
(1)求曲線C1的直角坐標方程及直線l的普通方程;
(2)若曲線C2的參數(shù)方程為 (α為參數(shù)),曲線P(x0 , y0)上點P的極坐標為 ,Q為曲線C2上的動點,求PQ的中點M到直線l距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F(1,0),點A是直線l1:x=﹣1上的動點,過A作直線l2 , l1⊥l2 , 線段AF的垂直平分線與l2交于點P.
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)若點M,N是直線l1上兩個不同的點,且△PMN的內(nèi)切圓方程為x2+y2=1,直線PF的斜率為k,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com