【題目】(本題滿分12分)已知函數(shù)f(x)=ex, g(x)=lnx.

(1)設(shè)f(x)在x1處的切線為l1, g(x)在x2處的切線為l2,l1//l2,x1g(x2)的值;

(2)若方程af 2(x)-f(x)-x=0有兩個(gè)實(shí)根,求實(shí)數(shù)a的取值范圍;

(3)設(shè)h(x)=f(x)(g(x)-b),h(x)在[ln2,ln3]內(nèi)單調(diào)遞減,求實(shí)數(shù)b的取值范圍.

【答案】(1)0.

(2) 0<a<1.

(3) bln2+.

【解析】分析:(1)求導(dǎo),利用l1//l2時(shí)k值相等,即可求出答案;

(2)參變分離,利用導(dǎo)數(shù)的應(yīng)用以及數(shù)形結(jié)合即可得到答案;

(3)由題意h(x)=f(x)(g(x)-b)=ex(lnxb),求導(dǎo),因?yàn)?/span>h(x)在[ln2,ln3]內(nèi)單調(diào)遞減,所以在[ln2,ln3]上恒成立,再參變分離,分析討論即可.

詳解:(1) f′(x)=ex, g′(x)=

由題意知:

x1g(x2)=x1ln=0.

(2) 方程af 2(x)-f(x)-x=0,ae2xexx=0,a

φ(x)=, φ′(x)=-

當(dāng)x<0時(shí),ex<1,ex-1<0,所以ex+2x-1<0,所以φ′(x)>0,故φ(x)單調(diào)增;

當(dāng)x>0時(shí),ex>1,ex-1>0,所以ex+2x-1>0,所以φ′(x)<0,故φ(x)單調(diào)減.

從而φ(x)maxφ(0)=1

又,當(dāng)x>0時(shí),φ(x)=>0

原方程有兩個(gè)實(shí)根等價(jià)于直線yaφ(x)的圖像有兩個(gè)交點(diǎn),故0<a<1.

(3)由題意h(x)=f(x)(g(x)-b)=ex(lnxb),h′(x)=ex(lnxb)

因?yàn)?/span>h(x)在[ln2,ln3]內(nèi)單調(diào)遞減,所以h′(x)=ex(lnxb)≤0在[ln2,ln3]內(nèi)恒成立

由于ex>0,故只需lnxb≤0在[ln2,ln3]內(nèi)恒成立

blnx在[ln2,ln3]內(nèi)恒成立

t(x)=lnx, t′(x)=

當(dāng)ln2≤x<1時(shí),t′(x)<0,故t(x)單調(diào)減;

當(dāng)1≤xln3時(shí),t′(x)>0,故t(x)單調(diào)增.

下面只要比較t(ln2)與t(ln3)的大小.

思路:[詳細(xì)過程略]

先證明:x1+x2>2

又,ln2+ln3=ln6<2

故當(dāng)x1=ln2時(shí),ln3< x2

t(ln3)<t(ln2)

所以t(x)maxt(ln2)=ln2+

所以bln2+.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△AnBnCn的三邊長分別為an , bn , cn , △AnBnCn的面積為Sn , n=1,2,3…若b1>c1 , b1+c1=2a1 , an+1=an , , ,則(
A.{Sn}為遞減數(shù)列
B.{Sn}為遞增數(shù)列
C.{S2n1}為遞增數(shù)列,{S2n}為遞減數(shù)列
D.{S2n1}為遞減數(shù)列,{S2n}為遞增數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+(e﹣a)x﹣b,其中e為自然對數(shù)的底數(shù).若不等式f(x)≤0恒成立,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為10萬元,每生產(chǎn)1千件需另投入2.7萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝x千件并全部銷售完,每千件的銷售收入為萬元,且.

1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;

2)年產(chǎn)量為多少千件時(shí),該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入年總成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 的圖象過點(diǎn)。

(1)求的值并求函數(shù)的值域;

(2)若關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;

(3)若函數(shù), ,則是否存在實(shí)數(shù),使得函數(shù)的最大值為0?若存在,求出的值;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱ABCA1B1C1中,側(cè)面AA1C1C是菱形,AC1A1C交于點(diǎn)O,點(diǎn)EAB的中點(diǎn).

(1)求證:OE∥平面BCC1B1.

(2)AC1A1B,求證:AC1BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,若,且的圖象相鄰的對稱軸間的距離不小于.

(1)求的取值范圍.

(2)若當(dāng)取最大值時(shí), ,且在中, 分別是角的對邊,其面積,求周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列對任意滿足,下面給出關(guān)于數(shù)列的四個(gè)命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個(gè)數(shù)為(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三年級有500名學(xué)生,為了了解數(shù)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)生在一次測試中的數(shù)學(xué)成績,制成如下頻率分布表:

分組

頻數(shù)

頻率

12

4

合計(jì)

根據(jù)上面圖表,求處的數(shù)值

在所給的坐標(biāo)系中畫出的頻率分布直方圖;

根據(jù)題中信息估計(jì)總體平均數(shù),并估計(jì)總體落在中的概率.

查看答案和解析>>

同步練習(xí)冊答案