1.已知集合A={x|x≥a},B={x|1≤x<2},且A∪∁RB=R,則實數(shù)a的取值范圍是(  )
A.(-∞,1]B.(-∞,1)C.[2,+∞)D.(2,+∞)

分析 由題意可得,∁RB={x|x≥2或x<1},結合數(shù)軸可求a得范圍

解答 解:∵B={x|1≤x<2},
∴∁RB={x|x≥2或x<1},
要使A∪(∁RB)=R,則a≤1.
故選:A

點評 本題主要考查集合的基本運算,以及利用集合關系求參數(shù)問題,利用數(shù)形結合是解決此類問題的基本方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.將一根繩子對折,然后用剪刀在對折過的繩子上任意一處剪斷,則得到的三條繩子的長度可以作為三角形的三邊形的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知下列命題:
①“M>N”是“($\frac{2}{3}$)M<($\frac{2}{3}$)N”的充要條件.
②若函數(shù)y=f(x+1)為偶函數(shù),則y=f(x)的圖象關于x=1對稱;
③命題p:“?x∈R,x2-2≥0”的否定形式為非p:“?x∈R,x2-2<0”;
④命題“若x≠y,則sin x≠sin y”的逆否命題為真命題
其中正確的命題序號是①②③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2${\sqrt{3}^{\;}}$,且AC,BD交于點O,E是PB上任意一點.
(1)求證:AC⊥DE;
(2)若E為PB的中點,且二面角A-PB-D的余弦值為$\frac{{\sqrt{21}}}{7}$,求EC與平面PAB所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖在平行四邊形ABCD中,O是AC與BD的交點,P、Q、M、N分別是線段OA、OB、OC、OD的中點.在A、P、M、C中任取一點記為E,在B、Q、N、D中任取一點記為F.設G為滿足向量$\overrightarrow{OG}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$的點,則在上述的點G組成的集合中的點,落在平行四邊形ABCD外(不含邊界)的概率為(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設函數(shù)f(x)=$\left\{\begin{array}{l}{3x+\frac{5}{2},x<1}\\{{2}^{x},x≥1}\end{array}\right.$,則滿足f(f(a))=2f(a)的a的取值范圍是[-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.空間四邊形ABCD中,E、F分別為AC、BD中點,若CD=2AB=2,EF⊥AB,則EF與CD所成的角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知命題p:指數(shù)函數(shù)y=(a-1)x在R上是單調函數(shù);命題q:?x∈R,x2-(3a-2)x+1=0.若命題“p∨q”為真命題,命題“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若x,y滿足條件$\left\{\begin{array}{l}3x-5y+6≥0\\ 2x+3y-15≤0\\ y≥0\end{array}$,則z=$\frac{1}{2}$x+y的最大值為$\frac{9}{2}$.

查看答案和解析>>

同步練習冊答案