13.空間四邊形ABCD中,E、F分別為AC、BD中點(diǎn),若CD=2AB=2,EF⊥AB,則EF與CD所成的角為( 。
A.30°B.45°C.60°D.90°

分析 取AD的中點(diǎn)G,連接EG、FG,由三角形中位線定理得EG∥CD,從而得到∠GEF是EF與CD所成的角,由此能求出EF與CD所成的角的大。

解答 解:取AD的中點(diǎn)G,連接EG、FG,
∵E、F分別為AC、BD中點(diǎn),
∴EG∥CD,且EG=$\frac{1}{2}CD$=1,
FG∥AB,且FG=$\frac{1}{2}AB$=$\frac{1}{2}$.
∵EF⊥AB,F(xiàn)G∥AB,∴EF⊥FG.
∵EG∥CD,∴∠GEF是EF與CD所成的角,
在Rt△EFG中,∵EG=1,GF=$\frac{1}{2}$,EF⊥FG,∴∠GEF=30°,
即EF與CD所成的角為30°.
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是異面直線及其所成的角,理解異面直線夾角的定義利用平移法,構(gòu)造出滿足條件的平面角是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.函數(shù)f(x)=$\frac{1}{2}$x2-(a+1)x+alnx.
(1)討論f(x)單調(diào)性;
(2)若f(x)恰有兩個(gè)零點(diǎn),求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=$\frac{{\sqrt{1-{x^2}}}}{x}$的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,0)∪(0,1]B.[-1,1]C.[-1,0)∪(0,1)D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|x≥a},B={x|1≤x<2},且A∪∁RB=R,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,1]B.(-∞,1)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-4.若同時(shí)滿足條件:
①?x∈R,f(x)<0 或g(x)<0;
②?x∈(-∞,-4),f(x)g(x)<0.
求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在區(qū)間[$\frac{π}{6}$,$\frac{π}{2}$]上單調(diào),且f($\frac{π}{2}$)=f($\frac{2π}{3}$)=-f($\frac{π}{6}$),則f(x)的最小正周期為  (  )
A.$\frac{π}{2}$B.C.D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.為了得到函數(shù)y=$\sqrt{2}$cos3x的圖象,可以將函數(shù)y=sin3x+cos3x的圖象(  )
A.向右平移$\frac{π}{4}$個(gè)單位B.向左平移$\frac{π}{4}$個(gè)單位
C.向右平移$\frac{π}{12}$個(gè)單位D.向左平移$\frac{π}{12}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)是定義在R上的偶函數(shù),若對(duì)任意x∈R,都有f(4+x)=f(-x),且當(dāng)x∈[0,2]時(shí),f(x)=2x-1,則下列結(jié)論不正確的是( 。
A.函數(shù)f(x)的最小正周期為4B.f(1)<f(3)
C.f(2016)=0D.函數(shù)f(x)在區(qū)間[-6,-4]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=6cos2x-$\sqrt{3}$sin2x.
(1)求f(x)的最小正周期和最大值;
(2)求銳角α滿足f(α)=3-2$\sqrt{3}$,求tan$\frac{4}{5}$α.

查看答案和解析>>

同步練習(xí)冊(cè)答案