已知函數(shù).
(Ⅰ)求的最小正周期;
(Ⅱ)求在區(qū)間上的取值范圍.

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ)這是一類相當(dāng)?shù)湫偷念}目,首先應(yīng)用和差倍半的三角函數(shù)公式,
將函數(shù)化簡為正弦型函數(shù),由即得最小正周期.
(Ⅱ)注意從,確定,進一步得到取值范圍.
試題解析:(Ⅰ)                  2分
                  4分
                  6分
最小正周期為,                  8分
(Ⅱ)因為,所以                  10分
所以                  12分
所以,                              13分
所以取值范圍為.                             14分
考點:和差倍半的三角函數(shù),三角函數(shù)的圖象和性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(l)求函數(shù)的最小正周期;
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的最大值是1,其圖像經(jīng)過點。
(1)求的解析式;
(2)已知,且的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,扇形AOB,圓心角AOB的大小等于,半徑為2,在半徑OA上有一動點C,過點C作平行于OB的直線交弧AB于點P.

(1)若C是半徑OA的中點,求線段PC的長;
(2)設(shè),求面積的最大值及此時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的最大值為2.

(1)求的值及的最小正周期;
(2)在坐標(biāo)紙上做出上的圖像.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

ΔABC中,,.
(1)求證:;
(2)若a、b、c分別是角A、B、C的對邊,,求c和ΔABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若,求的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其中,角的頂點與坐標(biāo)原點重合,始邊與軸非負半軸重合,終邊經(jīng)過點,且.
(1)若點的坐標(biāo)為(-),求的值;
(2)若點為平面區(qū)域上的一個動點,試確定角的取值范圍,并求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,函數(shù)·,且最小正周期為
(1)求的值;
(2)設(shè),求的值.

查看答案和解析>>

同步練習(xí)冊答案