如圖,四棱錐中,面面,底面是直角梯形,側(cè)面是等腰直角三角形.且∥,,,.
(1)判斷與的位置關(guān)系;
(2)求三棱錐的體積;
(3)若點(diǎn)是線段上一點(diǎn),當(dāng)//平面時(shí),求的長(zhǎng).
(1);(2);(3).
解析試題分析:本題以四棱錐為幾何背景考查線線垂直、線面垂直、線面平行、線線平行的判定,在解題過(guò)程中還遇到了等腰直角三角形和直角梯形以及相似三角形等基礎(chǔ)知識(shí),考查空間想象能力和推理論證能力.第一問(wèn),取中點(diǎn),連結(jié),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/41/a/x5ao32.png" style="vertical-align:middle;" />是等腰直角三角形,所以,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f8/e/1nnuc2.png" style="vertical-align:middle;" />是直角梯形且,所以四邊形為正方形,所以,所以平面,所以;第二問(wèn),先利用面面垂直,可得到線面垂直,得到錐體的高,用等體積法將轉(zhuǎn)化為,再利用體積公式求值;第三問(wèn),先在面內(nèi)找到線,這是由于// 平面,再利用相似三角形,得到邊長(zhǎng)的關(guān)系,所以,所以.
試題解析:(1)證明:取中點(diǎn),連結(jié),.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/58/7/18rw74.png" style="vertical-align:middle;" />,所以.
因?yàn)樗倪呅?img src="http://thumb.zyjl.cn/pic5/tikupic/f8/e/1nnuc2.png" style="vertical-align:middle;" />為直角梯形,,,
所以四邊形為正方形,所以.
所以平面. 所以 . 4分
(2)由,面面易得
所以, 8分
(3)解:連接交于點(diǎn),面面.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/2e/f/vj6hd2.png" style="vertical-align:middle;" />//平面,所以//.
在梯形中,有與相似,
可得
所以, 12分
考點(diǎn):1.線面垂直的判定定理;2.等體積法;3.相似三角形的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在直三棱柱ABC-A1B1C1中,AB=4,AC=BC=3,D為AB的中點(diǎn).
(Ⅰ)求異面直線CC1和AB的距離;
(Ⅱ)若AB1⊥A1C,求二面角A1-CD-B1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知三棱錐的側(cè)棱兩兩垂直,且,,是的中點(diǎn)。
(1)求異面直線與所成角的余弦值;
(2)求直線和平面的所成角的正弦值。
(3)求點(diǎn)E到面ABC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在三棱錐中,是邊長(zhǎng)為2的正三角形,平面平面,,分別為的中點(diǎn).
(1)證明:;
(2)求銳二面角的余弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(如圖1)在平面四邊形中,為中點(diǎn),,,且,現(xiàn)沿折起使,得到立體圖形(如圖2),又B為平面ADC內(nèi)一點(diǎn),并且ABCD為正方形,設(shè)F,G,H分別為PB,EB,PC的中點(diǎn).
(1)求三棱錐的體積;
(2)在線段PC上是否存在一點(diǎn)M,使直線與直線所成角為?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點(diǎn)B到平面MAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥底面ABC,側(cè)棱AA1與底面ABC成60°的 角,AA1=2.底面ABC是邊長(zhǎng)為2的正三角形,其重心為G點(diǎn),E是線段BC1上一點(diǎn),且BE=3BC1.
(1)求證:GE∥側(cè)面AA1B1B;
(2)求平面B1GE與底面ABC所成銳二面角的正切值;
(3)求點(diǎn)B到平面B1GE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)如圖,ABC在平面外,AB∩=P,BC∩=Q,AC∩=R,求證:P,Q,R三點(diǎn)共線.
(2)如圖,空間四邊形ABCD中,E,F分別是AB和CB上的點(diǎn),G,H分別是CD和AD上的點(diǎn), 且EH與FG相交于點(diǎn)K. 求證:EH,BD,FG三條直線相交于同一點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,點(diǎn)M是A1B的中點(diǎn),點(diǎn)N是B1C的中點(diǎn),連接MN
(Ⅰ)證明:MN//平面ABC;
(Ⅱ)若AB=1,AC=AA1=,BC=2,求二面角A—A1C—B的余弦值的大小
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com