分析 (1)當(dāng)k=2時(shí),方程是含有絕對(duì)值的方程,對(duì)絕對(duì)值內(nèi)的值進(jìn)行分類(lèi)討論去掉絕對(duì)值后解之.
(2)先將含有絕對(duì)值的函數(shù)轉(zhuǎn)化為一元一次函數(shù)和二元一次函數(shù)的分段函數(shù)的形式,再利用一元一次函數(shù)與二元一次函數(shù)的單調(diào)性,即可求出k的取值范圍,
(3)根據(jù)(2)即可證明.
解答 解:(1)當(dāng)k=2時(shí),f(x)=|x2-1|+x2+2x=$\left\{\begin{array}{l}{2{x}^{2}+2x-1,x≥1或x≤-1}\\{2x+1,-1<x<1}\end{array}\right.$
∴2x2+2x-1=0或2x+1=0,
解得x=-$\frac{1+\sqrt{3}}{2}$,x=$\frac{-1+\sqrt{3}}{2}$(舍去),x=-$\frac{1}{2}$,
故方程為解為-$\frac{1+\sqrt{3}}{2}$和-$\frac{1}{2}$
(2):不妨設(shè)0<α<β<2,因?yàn)閒(x)=$\left\{\begin{array}{l}{2{x}^{2}+kx-1,|x|>1}\\{kx+1,|x|≤1}\end{array}\right.$,
所以f(x)在(0,1]是單調(diào)函數(shù),故f(x)=0在(0,1]上至多一個(gè)解.
若 1<x1<x2<2,則αx1x2=-$\frac{1}{2}$<0,故不符題意,因此0<x1≤1<x2<2.
由f(x1)=0得k=-$\frac{1}{{x}_{1}}$,所以k≤-1. 由f(x2)=0得,k=$\frac{1}{{x}_{2}}$-2x2,
所以-$\frac{7}{2}$<k<-1,
故當(dāng)-$\frac{7}{2}$<k<-1時(shí),方程f(x)=0在(0,2)上有兩個(gè)解,
故所求的k的范圍是(-$\frac{7}{2}$,-1).
(3)由于當(dāng)0<x1≤1<x2<2時(shí),k=-$\frac{1}{{x}_{1}}$,2x22+kx2-1=0,
消去k得,2x1x22-x1-x2=0,∴x1+x2=2x1x22,∴$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=$\frac{{x}_{1}+{x}_{2}}{{x}_{1}•{x}_{2}}$=2x2.
∵1<x2<2,∴2<2x2<4,∴2<$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$<4,
故$\frac{1}{α}+\frac{1}{β}$<4.
點(diǎn)評(píng) 本題主要考查的高考考點(diǎn):函數(shù)的基本性質(zhì)、方程與函數(shù)的關(guān)系等基礎(chǔ)知識(shí);易錯(cuò)點(diǎn):解析問(wèn)題的能力較差,分類(lèi)討論的問(wèn)題考慮不全面.備考提示:本題還考查函數(shù)的基本性質(zhì)、方程與函數(shù)的關(guān)系等基礎(chǔ)知識(shí),以及綜合運(yùn)用所學(xué)知識(shí)、分類(lèi)討論等思想方法解析和解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
推銷(xiāo)員編號(hào) | 1 | 2 | 3 | 4 | 5 |
工作年限x/年 | 3 | 5 | 6 | 7 | 9 |
年推銷(xiāo)金額y/萬(wàn)元 | 60 | 90 | 90 | 120 | 150 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com