精英家教網 > 高中數學 > 題目詳情
8.等比數列{an}滿足:a1+a6=11,a3a4=$\frac{32}{9}$,則a1=$\frac{32}{3}或\frac{1}{3}$.

分析 由已知得a1,a6是方程${x}^{2}-11x+\frac{32}{9}=0$的兩個根,由此能求出a1的值.

解答 解:∵等比數列{an}滿足:a1+a6=11,a3a4=$\frac{32}{9}$,
∴a1a6=a3a4=$\frac{32}{9}$,
∴a1,a6是方程${x}^{2}-11x+\frac{32}{9}=0$的兩個根,
解方程,得:${a}_{1}=\frac{1}{3},{a}_{6}=\frac{32}{3}$或${a}_{1}=\frac{32}{3},{a}_{6}=\frac{1}{3}$.
∴a1的值為$\frac{32}{3}或\frac{1}{3}$;
故答案為:$\frac{32}{3}或\frac{1}{3}$.

點評 本題考查等比數列的首項的求法,是基礎題,解題時要認真審題,注意等比數列的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

8.已知點$({\sqrt{2},2})$與點$({-2,-\frac{1}{2}})$分別在冪函數f(x),g(x)的圖象上.
(1)分別求冪函數f(x),g(x)的解析式,并在同一直角坐標系中畫出兩個函數的圖象;
(2)觀察圖象,并指出當x為何值時,有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知函數$f(x)={log_4}({{4^x}+1})+kx$是偶函數.
(1)求k的值;
(2)若函數$h(x)={4^{f(x)+\frac{1}{2}x}}+m×{2^x}-1,x∈[{0,{{log}_2}3}]$,是否存在實數m使得h(x)最小值為0,若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.設f(x)為定義在R上的奇函數,當x≥0時,f(x)=2x+2x+b,則b為( 。
A.-1B.0C.1D.無法確定

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.將一個長方體的四個側面和兩個底面延展成平面后,可將空間分成24部分.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.全集U=R,集合A={x|-1≤x≤1且x≠0},B={x|x<-1或x>4},則A∩(∁UB)=(  )
A.{x|-2≤x<4}B.{x|x≤3或x≥4}C.{x|-1≤x≤1且x≠0}D.{x|-1≤x≤3}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知定義在R上的奇函數f(x)滿足當x≥0時,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,則關于x的函數y=f(x)-a,(-1<a<0)的所有零點之和為( 。
A.2a-1B.2-a-1C.1-2-aD.1-2a

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知橢圓$C:\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1(a>b>0)$的離心率為$\frac{3}{5}$,過左焦點F且垂直于長軸的弦長為$\frac{32}{5}$.
(1)求橢圓C的標準方程;
(2)點P(m,0)為橢圓C的長軸上的一個動點,過點P且斜率為$\frac{4}{5}$的直線l交橢圓C于A、B兩點,證明:|PA|2+|PB|2為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.函數f(x)=x3-3x2+1是減函數的區(qū)間為(0,2).

查看答案和解析>>

同步練習冊答案