【題目】已知曲線C的方程為:ax2+ay2﹣2a2x﹣4y=0(a≠0,a為常數(shù)).
(1)判斷曲線C的形狀;
(2)設曲線C分別與x軸、y軸交于點A、B(A、B不同于原點O),試判斷△AOB的面積S是否為定值?并證明你的判斷;
(3)設直線l:y=﹣2x+4與曲線C交于不同的兩點M、N,且|OM|=|ON|,求曲線C的方程.
【答案】
(1)解:將曲線C的方程化為 )
可知曲線C是以點(a, )為圓心,以 為半徑的圓
(2)解:△AOB的面積S為定值.
證明如下:
在曲線C的方程中令y=0得ax(x﹣2a)=0,得點A(2a,0),
在曲線C的方程中令x=0得y(ay﹣4)=0,得點B(0, ),
∴S= |OA||OB|= |2a|| |=4(為定值).
(3)解:∵圓C過坐標原點,且|OM|=|ON|,
∴圓心(a, )在MN的垂直平分線上,∴ = ,∴a=±2,
當a=﹣2時,圓心坐標為(﹣2,﹣1),圓的半徑為 ,
圓心到直線l:y=﹣2x+4的距離d= = > ,
直線l與圓C相離,不合題意舍去,
∴a=2,這時曲線C的方程為x2+y2﹣4x﹣2y=0
【解析】(1)把方程化為圓的標準方程,可得結論;(2)求出A,B的坐標,即可得出△AOB的面積S為定值;(3)由圓C過坐標原點,且|OM|=|ON|,可得圓心(a, )在MN的垂直平分線上,從而求出a,再判斷a=﹣2不合題意即可.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.設f(x)= .
(1)求a、b的值;
(2)若不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實數(shù)k的取值范圍;
(3)若f(|2x﹣1|)+k ﹣3k=0有三個不同的實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個平面圖形的斜二測畫法的直觀圖是一個邊長為a的正方形,則原平面圖形的面積為( )
A. a2
B.a2
C.2 a2
D.2a2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲、乙兩種產(chǎn)品所需煤、電力、勞動力、獲得利潤及每天資源限額(量大供應量)如下表所示:
資源\消耗量\產(chǎn)品 | 甲產(chǎn)品(每噸) | 乙產(chǎn)品(每噸) | 資源限額(每天) |
煤(t) | 9 | 4 | 360 |
電力(kwh) | 4 | 5 | 200 |
勞動力(個) | 3 | 10 | 300 |
利潤(萬元) | 6 | 12 |
問:每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤總額最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四組函數(shù)中,表示同一函數(shù)的是( )
A.f(x)=|x|,g(x)=
B.f(x)=lg x2 , g(x)=2lg x
C.f(x)= ,g(x)=x+1
D.f(x)= ? ,g(x)=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學名著《九章算術》中有這樣一個問題:今有牛、馬、羊食人苗,苗主責之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應償還多少?已知牛、馬、羊的主人各應償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用0,1,2,3,4,5這六個數(shù)字:
(1)能組成多少個無重復數(shù)字的四位偶數(shù)?
(2)能組成多少個無重復數(shù)字且為5的倍數(shù)的五位數(shù)?
(3)能組成多少個無重復數(shù)字且比1325大的四位數(shù)?(以上各問均用數(shù)字作答)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com