【題目】已知直線:,拋物線圖象上的一動點到直線與到軸距離之和的最小值為__________,到直線距離的最小值為__________

【答案】1

【解析】

先設拋物線上的點到直線的距離為,到準線的距離為,到軸的距離為,根據拋物線的性質,得到,結合圖像,即可得出的最小值是焦點到直線的距離,根據點到直線距離公式,即可求出最小值;再設平行于直線且與拋物線相切的直線方程為:,根據判別式等于零,求出直線方程,兩平行線間的距離即是動點到直線的距離的最小值.

設拋物線上的點到直線的距離為,到準線的距離為,到軸的距離為,由拋物線方程可得:焦點坐標為,準線方程為:,則,,

因此,

如圖所示,的最小值是焦點到直線的距離,即;

所以的最小值為:;

設平行于直線且與拋物線相切的直線方程為:

得:,

因為直線與拋物線線切,

所以,解得:,

因此

所以兩平行線間的距離為:,

到直線距離的最小值為.

故答案為:(1). 1(2). .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線在點處的切線與直線垂直,求函數(shù)的單調區(qū)間;

(2)若對于任意都有成立,試求的取值范圍;

(3)記.時,函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】前些年有些地方由于受到提高的影響,部分企業(yè)只重視經濟效益而沒有樹立環(huán)保意識,把大量的污染物排放到空中與地下,嚴重影響了人們的正常生活,為此政府進行強制整治,對不合格企業(yè)進行關閉、整頓,另一方面進行大量的綠化來凈化和吸附污染物.通過幾年的整治,環(huán)境明顯得到好轉,針對政府這一行為,老百姓大大點贊.

(1)某機構隨機訪問50名居民,這50名居民對政府的評分(滿分100分)如下表:

分數(shù)

頻數(shù)

2

3

11

14

11

9

請在答題卡上作出居民對政府的評分頻率分布直方圖:

(2)當?shù)丨h(huán)保部門隨機抽測了2018年11月的空氣質量指數(shù),其數(shù)據如下表:

空氣質量指數(shù)(

0-50

50-100

100-150

150-200

天數(shù)

2

18

8

2

用空氣質量指數(shù)的平均值作為該月空氣質量指數(shù)級別,求出該月空氣質量指數(shù)級別為第幾級?(同一組數(shù)據用該組數(shù)據的區(qū)間中點值作代表,將頻率視為概率)(相關知識參見附表)

(3)空氣受到污染,呼吸系統(tǒng)等疾病患者最易感染,根據歷史經驗,凡遇到空氣輕度污染,小李每天會服用有關藥品,花費50元,遇到中度污染每天服藥的費用達到100元.環(huán)境整治前的2015年11月份小李因受到空氣污染患呼吸系統(tǒng)等疾病花費了5000元,試估計2018年11月份(參考(2)中表格數(shù)據)小李比以前少花了多少錢的醫(yī)藥費?

附:

空氣質量指數(shù)(

0-50

50-100

100-150

150-200

200-300

空氣質量指數(shù)級別

空氣質量指數(shù)

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地統(tǒng)計局就該地居民的月收入調查了10000人,并根據所得數(shù)據畫了樣本的頻率分布直方圖(每個分組包括左端點,不包括右端點,如第一組表示收入在[1000,1500))

(1)求居民月收入在[2000,2500)的頻率;

(2)根據頻率分布直方圖算出樣本數(shù)據的中位數(shù);

(3)在月收入為[2500,3000),[3000,3500),[3500,4000]的三組居民中,采用分層抽樣方法抽出90人作進一步分析,則月收入在[3000,3500)的這段應抽多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知拋物線Cx2=4y的焦點為F,直線l與拋物線C交于A,B兩點,延長AF交拋物線C于點D,若AB的中點縱坐標為|AB|-1,則當∠AFB最大時,|AD|=(  )

A. 4B. 8C. 16D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱中,平面,于點,點在棱上,滿足.

,求證:平面;

設平面與平面所成的銳二面角的大小為,若,試判斷命題的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知棱柱的底面是菱形,且ABCD,,F為棱的中點,M為線段的中點.

1)求證:ABCD

2)判斷直線MF與平面的位置關系,并證明你的結論;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為改善人居環(huán)境,某區(qū)增加了對環(huán)境綜合治理的資金投入,已知今年治理環(huán)境(畝)與相應的資金投入(萬元)的四組對應數(shù)據的散點圖如圖所示,用最小二乘法得到關于的線性回歸方程.

1)求的值,并預測今年治理環(huán)境10畝所需投入的資金是多少萬元?

2)已知該區(qū)去年治理環(huán)境10畝所投入的資金為3.5萬元,根據(1)的結論,請你對該區(qū)環(huán)境治理給出一條簡短的評價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的左右焦點分別為,已知其離心率為,且過點.

1)求橢圓的標準方程.

2)設,是橢圓上位于軸上方的兩點,且直線與直線平行,交于點,探究是否為定值?如果為定值,請求出該定值;如果不為定值,請說明理由.

查看答案和解析>>

同步練習冊答案