精英家教網 > 高中數學 > 題目詳情

【題目】已知拋物線 )的焦點為 在拋物線, ,直線 與拋物線 交于 , 兩點, 為坐標原點.

(1)求拋物線 的方程

(2)求 的面積.

【答案】1 2 .

【解析】試題分析:(1)因為點 在拋物線 上,且 ,由拋物線的定義,可得,解可得,代入標準方程,即可得拋物線 的方程;(2)聯立直線與拋物線的方程,消去,,由一元二次方程根與系數的關系可得,結合拋物線的幾何性質可得的長,由點到直線距離公式可得到直線進而由三角形面積公式計算可得答案.

試題解析:1 在拋物線, ,

∴由拋物線定義得,

∴所求拋物線 的方程為 .

2 消去 ,

并整理得, ,

, , ,

由(1)知

∴直線 過拋物線 的焦點 ,

又∵點 到直線 的距離 ,

的面積 .

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知矩形, , ,點為矩形內一點,且,設.

(1)當時,求的值;

(2)求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xex﹣ae2x(a∈R)恰有兩個極值點x1 , x2(x1<x2),則實數a的取值范圍為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解答題
(1)求函數y=2|x﹣1|﹣|x﹣4|的值域;
(2)若不等式2|x﹣1|﹣|x﹣a|≥﹣1在x∈R上恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓心在軸上的圓與直線切于點.

(1)求圓的標準方程;

(2)已知,經過原點,且斜率為正數的直線與圓交于兩點.

(。┣笞C: 為定值;

(ⅱ)求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數據分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調查活動(一人答一份).現從回收的年齡在2060歲的問卷中隨機抽取了100份, 統計結果如下面的圖表所示.

年齡

分組

抽取份

答對全卷的人數

答對全卷的人數占本組的概率

[20,30)

40

28

0.7

[30,40)

n

27

0.9

[40,50)

10

4

b

[50,60]

20

a

0.1

(1)分別求出n, a, b, c的值;

(2)從年齡在[40,60]答對全卷的人中隨機抽取2人授予“環(huán)保之星”,求年齡在[50,60] 的人中至少有1人被授予“環(huán)保之星”的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】①在同一坐標系中,的圖象關于軸對稱

是奇函數

③與的圖象關于成中心對稱

的最大值為

以上四個判斷正確有____________________寫上序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓的圓心在直線上,且圓經過點與點.

(1)求圓的方程;

(2)過點作圓的切線,求切線所在的直線的方程.

【答案】(1);(2).

【解析】試題分析:(1)求出線段的中點,進而得到線段的垂直平分線為,與聯立得交點,∴.則圓的方程可求

(2)當切線斜率不存在時,可知切線方程為.

當切線斜率存在時,設切線方程為,由到此直線的距離為,解得,即可到切線所在直線的方程.

試題解析:((1)設 線段的中點為,∵

∴線段的垂直平分線為,與聯立得交點,

.

∴圓的方程為.

(2)當切線斜率不存在時,切線方程為.

當切線斜率存在時,設切線方程為,即

到此直線的距離為,解得,∴切線方程為.

故滿足條件的切線方程為.

【點睛本題考查圓的方程的求法,圓的切線,中點弦等問題,解題的關鍵是利用圓的特性,利用點到直線的距離公式求解.

型】解答
束】
20

【題目】某小型企業(yè)甲產品生產的投入成本(單位:萬元)與產品銷售收入(單位:萬元)存在較好的線性關系,下表記錄了最近5次產品的相關數據.

(投入成本)

7

10

11

15

17

(銷售收入)

19

22

25

30

34

1)求關于的線性回歸方程

2)根據(1)中的回歸方程,判斷該企業(yè)甲產品投入成本20萬元的毛利率更大還是投入成本24萬元的毛利率更大()?

相關公式 , .

查看答案和解析>>

同步練習冊答案