A. | (-∞,-1] | B. | (-1,0) | C. | (0,1) | D. | (2,+∞) |
分析 本題先根據(jù)導(dǎo)函數(shù)在區(qū)間(1,2)上有零點(diǎn),得到b的取值范圍,再利用b的取值范圍,求出函數(shù)的單調(diào)增區(qū)間,結(jié)合b的取值范圍,選擇符合題意的選項(xiàng).
解答 解:∵函數(shù)f(x)=x+$\frac{x}$(b∈R),
∴f′(x)=1-$\frac{{x}^{2}}$,
∵函數(shù)f(x)=x+$\frac{x}$(b∈R)的導(dǎo)函數(shù)在區(qū)間(1,2)上有零點(diǎn)
∴當(dāng)1-$\frac{{x}^{2}}$=0時(shí),b=x2,x∈(1,2)
∴b∈(1,4)
令f'(x)>0 得到x$<-\sqrt$或x$>\sqrt$,
即f(x)的單調(diào)增區(qū)間為(-∞,-$\sqrt$),($\sqrt$,+∞),
∵b∈(1,4),
∴(2,+∞)適合題意.
故選:D.
點(diǎn)評(píng) 本題在研究了b的取值范圍后,得到了函數(shù)f(x)的單調(diào)增區(qū)間,在選擇選項(xiàng)時(shí),要注意選擇恒成立的選項(xiàng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1)k(2k-1) | B. | -(-1)k(2k-1) | C. | -(-1)k+1(2k+1) | D. | (-1)k+1(2k+1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 120 | B. | 200 | C. | 180 | D. | 240 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com