12.函數(shù)y=$\sqrt{2-{2^x}}$的定義域?yàn)椋ā 。?table class="qanwser">A.(0,1]B.[1,2)C.(-∞,1]D.[1,+∞)

分析 根據(jù)二次根式的性質(zhì)得到關(guān)于x的不等式,解出即可.

解答 解:由題意得:
2-2x≥0,
解得:x≤1,
故函數(shù)的定義域是(-∞,1],
故選:C.

點(diǎn)評(píng) 本題考查了求函數(shù)的定義域問題,考查二次根式的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=($\frac{1}{3}$)x2-9的單調(diào)遞減區(qū)間為(  )
A.(-∞,0)B.(0,+∞)C.(-9,+∞)D.(-∞,-9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a=5,b=4,cosC=$\frac{3}{5}$,則△ABC的面積是(  )
A.16B.6C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<$\frac{π}{2}$),其導(dǎo)函數(shù)f'(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A.$f(x)=cos(2x-\frac{π}{6})$B.$f(x)=sin(2x+\frac{π}{6})$C.$f(x)=\frac{1}{2}cos(2x+\frac{π}{6})$D.$f(x)=\frac{1}{2}sin(2x-\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,側(cè)棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB的中點(diǎn).
(1)求證:AM∥平面PCD;
(2)設(shè)點(diǎn)N是線段CD上的一動(dòng)點(diǎn),當(dāng)點(diǎn)N在何處時(shí),直線MN與平面PAB所成的角最大?并求出最大角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.等比數(shù)列{an}中,a1=3,a4=24,則數(shù)列{$\frac{1}{a_n}$}的前5項(xiàng)和為( 。
A.$\frac{19}{25}$B.$\frac{25}{36}$C.$\frac{31}{48}$D.$\frac{49}{64}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知在等比數(shù)列{an}中,a3+a6=6,a5+a8=9,則a7+a10等于( 。
A.5B.$\frac{25}{2}$C.6D.$\frac{27}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(x,-2)$\overrightarrow{c}$=(-1,y),若$\overrightarrow{a}⊥\overrightarrow$且$\overrightarrow{a}$∥$\overrightarrow{c}$,則x+y=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,三角形ABC是邊長(zhǎng)為4的正三角形,PA⊥底面ABC,$PA=\sqrt{7}$,點(diǎn)D是BC的中點(diǎn),點(diǎn)E在AC上,且DE⊥AC.
(1)證明:平面PDE⊥平面PAC;
(2)求三棱錐C-PDE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案