分析 (1)推導出PA⊥DE,DE⊥AC,由此能證明DE⊥平面PAC,從而平面PDE⊥平面PAC.
(2)由VC-PDE=VP-DEC,能求出三棱錐C-PDE的體積.
解答 證明:(1)∵PA⊥底面ABC,DE?底面ABC,
∴PA⊥DE,
又DE⊥AC,PA∩AC=A,
∴DE⊥平面PAC.
又DE?平面PDE,∴平面PDE⊥平面PAC.
解:(2)在Rt△DEC中,∠ECD=60°,CD=2,
則$DE=\sqrt{3}$,
∴${S_{△DEC}}=\frac{1}{2}×1×\sqrt{3}=\frac{{\sqrt{3}}}{2}$,
∴三棱錐C-PDE的體積${V_{C-PDE}}={V_{P-DEC}}=\frac{1}{3}{S_{△DEC}}|PA|=\frac{1}{3}×\frac{{\sqrt{3}}}{2}×\sqrt{7}=\frac{{\sqrt{21}}}{6}$.
點評 本題考查面面垂直的證明,考查三棱錐的體積的求法,是中檔題,解題時要認真審題,注意等體積法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1] | B. | [1,2) | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | N>M>K | B. | K>M>N | C. | M>K>N | D. | M>N>K |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{5}{4}{x^2}-5{y^2}=1$ | B. | $5{y^2}-\frac{5}{4}{x^2}=1$ | C. | $5{x^2}-\frac{5}{4}{y^2}=1$ | D. | $\frac{5}{4}{y^2}-5{x^2}=1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-5,5) | B. | (-12,12) | C. | (-13,13) | D. | (-15,15) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com