分析 (1)若m=2,求出集合A,B,即可求A∩B;
(2)若B⊆A,分類(lèi)討論,求m的取值范圍.
解答 解:$A=\left\{{y|y=\sqrt{3-2x},x∈[{-\frac{13}{2},\frac{3}{2}}]}\right\}$=[0,4]
(1)m=2,B={x|-1≤x≤3},
∴A∩B=[0,3];
(2)B⊆A,則B=∅,1-m>m+1,∴m<0,
B≠∅,$\left\{\begin{array}{l}{1-m≤m+1}\\{1-m≥0}\\{m+1≤4}\end{array}\right.$,∴0≤m≤1,
綜上所述,m≤1.
點(diǎn)評(píng) 本題考查集合的關(guān)系與運(yùn)算,考查分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-16)∪($\frac{1}{3}$,+∞) | B. | [-16,$\frac{1}{3}$] | C. | (-16,$\frac{1}{3}$) | D. | ($\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
ξ | 0 | 1 | 2 | 3 |
p | $\frac{6}{125}$ | x | y | $\frac{24}{125}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20+3$\sqrt{2}$ | B. | 16+8$\sqrt{2}$ | C. | 18+3$\sqrt{5}$ | D. | 18+6$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 24 | C. | 120 | D. | 720 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com