20.某同學(xué)參加學(xué)校自主招生3門課程的考試,假設(shè)該同學(xué)第一門課程取得優(yōu)秀成績概率為$\frac{2}{5}$,第二、第三門課程取得優(yōu)秀成績的概率分別為p,q(p<q),且不同課程是否取得優(yōu)秀成績相互獨(dú)立,記ξ為該生取得優(yōu)秀成績的課程數(shù),其分布列為
ξ0123
p$\frac{6}{125}$xy$\frac{24}{125}$
(1)求該生至少有1門課程取得優(yōu)秀成績的概率及求p,q(p<q)的值;
(2)求該生取得優(yōu)秀成績課程門數(shù)的數(shù)學(xué)期望Eξ.

分析 (1)由對(duì)立事件概率計(jì)算公式能求出該生至少有1門課程取得優(yōu)秀成績的概率,求出P(ξ=0)=$\frac{6}{125}$,P(ξ=3)=$\frac{24}{125}$,p<q,由此列出方程組能求出結(jié)果.
(2)由已知得ξ的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出該生取得優(yōu)秀成績課程門數(shù)的數(shù)學(xué)期望Eξ.

解答 解:(1)由已知得該生至少有1門課程取得優(yōu)秀成績的概率:
P=1-P(ξ=0)=1-$\frac{6}{125}$=$\frac{119}{125}$.
∵P(ξ=0)=$\frac{6}{125}$,P(ξ=3)=$\frac{24}{125}$,p<q,
∴$\left\{\begin{array}{l}{\frac{3}{5}(1-p)(1-q)=\frac{6}{125}}\\{\frac{2}{5}pq=\frac{24}{125}}\\{p<q}\end{array}\right.$,
解得p=$\frac{3}{5}$,q=$\frac{4}{5}$.
(2)由已知得ξ的可能取值為0,1,2,3,
P(ξ=0)=$\frac{6}{125}$,P(ξ=3)=$\frac{24}{125}$,
P(ξ=1)=$\frac{2}{5}(1-\frac{3}{5})(1-\frac{4}{5})$+(1-$\frac{2}{5}$)×$\frac{3}{5}×(1-\frac{4}{5})$+(1-$\frac{2}{5}$)×(1-$\frac{3}{5}$)×$\frac{4}{5}$=$\frac{37}{125}$,
P(ξ=2)=$\frac{2}{5}×\frac{3}{5}×(1-\frac{4}{5})$+$\frac{2}{5}×(1-\frac{3}{5})×\frac{4}{5}$+(1-$\frac{2}{5}$)×$\frac{3}{5}×\frac{4}{5}$=$\frac{58}{125}$,
∴Eξ=0×$\frac{6}{125}+1×\frac{37}{125}+2×\frac{58}{125}+3×\frac{24}{125}$=$\frac{9}{5}$.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,考查推理論證能力、運(yùn)算求解能力,考查分類討論思想、轉(zhuǎn)化化歸思想、整體思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓的中心在坐標(biāo)原點(diǎn),右焦點(diǎn)F的坐標(biāo)為(3,0),直線L:x+2y-2=0交橢圓于A.B兩點(diǎn),線段AB的中點(diǎn)為$M(1,\frac{1}{2})$;
(1)求橢圓的方程;
(2)動(dòng)點(diǎn)N滿足NA⊥NB,求動(dòng)點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.四個(gè)不同的小球,全部放入編號(hào)為1,2,3,4,5的五個(gè)盒子中.(結(jié)果寫成數(shù)字)
(1)1號(hào)盒子中有球的放法有多少種?
(2)恰有兩個(gè)空盒的放法有多少種?
(3)恰有三個(gè)空盒的放法有多少種?
(4)甲球所放盒的編號(hào)不小于乙球所放盒的編號(hào)的放法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某大學(xué)的男生的體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立回歸方程$\stackrel{∧}{y}$=0.85x-85.71,則下列結(jié)論中不正確的是(  )
A.y與x具有正的線性相關(guān)關(guān)系
B.若該大學(xué)某女生身高為170cm,則可斷定其體重必為58.79kg
C.過該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D.回歸直線過樣本的中心$(\overline x,\overline y)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}中,${a_1}=1,{a_{n+1}}=2{a_n}+n-1({n∈{N^*}})$,則其前n項(xiàng)和Sn=${2^{n+1}}-2-\frac{{n({n+1})}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=anlog2an,求{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知集合$A=\left\{{y|y=\sqrt{3-2x},x∈[{-\frac{13}{2},\frac{3}{2}}]}\right\}$,B={x|1-m≤x≤m+1}.
(1)若m=2,求A∩B;
(2)若B⊆A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.(1+x-30x2)(2x-1)5的展開式中,含x3項(xiàng)的系數(shù)為-260(用數(shù)字填寫答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知平行四邊形ABCD中,$|\overrightarrow{AB}|=3$,$|\overrightarrow{AD}|=2$,對(duì)角線AC交BD于點(diǎn)O,AB上一點(diǎn)E滿足$\overrightarrow{OE}•\overrightarrow{BD}=0$,F(xiàn)為AC上任意一點(diǎn).
(Ⅰ)求$\overrightarrow{AE}•\overrightarrow{BD}$值;
(Ⅱ)若$|\overrightarrow{BD}|=\sqrt{10}$,求$\overrightarrow{AF}•\overrightarrow{EF}$的最小值.

查看答案和解析>>

同步練習(xí)冊答案