下列結論正確的是(   )
A.各個面都是三角形的幾何體是三棱錐
B.以三角形一條邊所在直線為旋轉軸,其余兩邊旋轉形成的曲面所圍成的幾何體叫圓錐
C.棱錐的側棱長與底面多邊形的邊長相等,則該棱錐可能是六棱錐
D.圓錐的頂點與底面圓周上的任意一點的連線都是母線
D

試題分析:A、如圖(1)所示,由兩個結構相同的三棱錐疊放在一起構成的幾何體,各面都是三角形,但它不是棱錐,故A錯誤;
B、如圖(2)(3)所示,若△ABC不是直角三角形,或是直角三角形但旋轉軸不是直角邊,所得的幾何體都不是圓錐,故B錯誤;
C、若六棱錐的所有棱長都相等,則底面多邊形是正六邊形.由過中心和定點的截面知,若以正六邊形為底面,側棱長必然要大于底面邊長,故C錯誤;
D、根據(jù)圓錐母線的定義知,故D正確.       故選D.

點評:我們要充分把握每個空間幾何體的結構特征。考查了空間想象能力。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

如右圖所示,一個三棱錐的三視圖是三個直角三角形 (單位:cm),則該三棱錐的外接球的表面積為 cm2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

三棱錐中,底面是邊長為2的正三角形, ⊥底面,且,則此三棱錐外接球的半徑為(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,E、F分別是正方形的邊的中點,沿SE、SF、EF將它折成一個幾何體,使重合,記作D,給出下列位置關系:①SD面EFD ; ②SE面EFD;③DFSE;④EF面SE其中成立的有(  )
A.①與②B.①與③
C.②與③D.③與④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

某圓柱的底面直徑為高為則它最多能放入半徑為的球      個。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于一個底邊在軸上的三角形,采用斜二測畫法作出其直觀圖,其直觀圖面積是原三角形面積的     (     )
A. 2倍B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖,等邊與直角梯形垂直,,,
,.若分別為的中點.

(1)求的值; (2)求面與面所成的二面角大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正三棱柱的各棱長都是2,E,F(xiàn)分別是的中點,則EF的長是(  )
A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若一個底面是正三角形的三棱柱的正視圖如圖所示,則其側面積等于 (      )
A.B.2 C.D.6

查看答案和解析>>

同步練習冊答案